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Abstract

In numerous current and future applications ranging from autonomous navigation of
mobile robots to collision avoidance systems for cars, an imaging system (installed
on a moving vehicle) takes 2D images of an environment with the aim of finding the
motion of the vehicle (translational and rotational velocities) as well as the structure
of the environment (shape). In machine vision, this problem is referred to as the
general motion vision problem.

This thesis introduces a direct method called fization for solving this general mo-
tion vision problem, arbitrary motion relative to an arbitrary environment. Avoiding
feature correspondence and optical flow has been the motivation behind this direct
method which uses the spatio-temporal brightness gradients of the images directly.
The fixation method results in a linear constraint equation (Fixation Constraint Equa-
tion) which explicitly expresses the rotational velocity in terms of the translational
velocity. The combination of this constraint equation with the Brightness-Change
Constraint Equation (a fundamental equation which relates the motion to the bright-
ness gradients at any image point) solves the general motion vision problem.

In contrast to previous direct methods, the fixation method does not impose any
severe restrictions on the motion or the environment. Moreover, the fiy.Ytion method
neither requires tracked images as its input nor uses tracking for obtaining fixated
images. Instead, it introduces a novel technique called the pixel shifting process to
construct fixated images for any arbitrary fixation point. This is done entirely in
software without any need to move the imaging system for tracking.

This fixation method has been successfully tested in the real world environment
for the recovery of the motion and shape in the general case. The experimental results
are presented and the implementation issues and techniques are discussed.
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Introduction
Chapter 1

One of the principal objects of theoretical research in

any department of knowledge is to find the point of ,iew

from which the subject appears in its greatest simplicity.

-Josiah Willard Gibbs

A little thought about the role of vision in the tasks that humans perform in their

everyday life leaves no doubt about its importance. For the past several decades,

physiologists and psychophysicists have been striving to understand the underlying

mechanisms of human vision. On a parallel track, computer vision scientists have

been working on the development of artificial systems for performing different visual

tasks.

1.1 Motion Vision

In many applications, an imaging system (installed on a moving vehicle) takes 2D

images of the environment. In motion vision, the goal is to find the motion of the

moving vehicle (translational and rotational velocities) as well as the shape (structure

of the environment), using a sequence of time varying images such as those shown in

fig. 1-1.

Like many other vision problems, motion vision is extremely hard to accomplish.

The difficulties stem from three major sources:

11
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Figure 1-1: A sequence of real images where the motion between two Images is a
combination of translation and rotation.

9 Underconstrained:

Deriving 3D information (motion and shape) from 2D data (imag,.., , a severely

under constrained problem (i.e. an infinite number of solutions are potentially coii-

sistent with the given data).

• Huge Amount of Data:

Processing even a single regular size image (512 x 512 pixr Hs) requires handling

of about a quarter million pixels worth of data.

e Noise: Real image data are very noisy.
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1.1.1 Problem statement

The problem which we have addressed in this thesis can be summarized as follows:

Finding the motion (relative translation and rotational velocitics), and

shape (cntvironment structure) from a sequence of two real images by a

direct method (not using either optical flow or feature corrmspondencc)

in the general case (without restricting the motion or shape).

1.2 Previous Work (Main Approaches)

People have been working on motion vision problems for several decades using three

major techniques which are optical flow, feature correspondence, and direct method.

A survey of previous literature on machine vision is given in [11] and a partial list

of last year papers in computer vision is compiled in [51]. Some of the current issues in

image flow theory and motion vision are discussed in [88, 4, 55]. Much of the earlier

work on recovering motion has been based on either establishing correspondences

between the images of prominent features (points, lines, contours, and so on) in an

image sequence, the so called feature correspondence [48, 80, 81, 35, 3] or establishing

the velocity of points over the whole image, commonly referred to as the opticalflow

[8, 14, 2].

Each of the main approaches (optical flow, feature correspondence. and direct

methods) are described briefly in this section and an example is given for each case

using the real image sequence in fig. 1-1.

1.2.1 Optical flow

The computation of the local flow field exploits a constraint equation between the

local brightness changes and the two components of the optical flow. This only gives

the components of flow in the direction of the brightness gradient. To compute the

full flow field, one needs additional constraints such as the heuristic assumption that
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the flow field is locally smooth [30, 28]. This leads to an estimated optical flow fivld

which may not be the same as the true motion field.

Figure 1-2 shows an optical flow field for the image sequence given in fig. 1-1.

The size and direction of the apparent velocity at any pixel is shown by an arrow.

Instead of the original images, such optical flow fields are used as a primary source

of information in the optical flow techniques.

The irregular optical flows on the upper edge of this map are probably duei to the

noise and inherent errors involved in the computations at the image borders.

Figure 1-2: The optical flow map for the given real image sequence. The arrows show
the magnitude and direction of the apparent motion at each point.

1.2.2 Feature correspondence

In general, identifying features here means determining gray-level corners. For limages

of smooth objects, it is difficult to find good features or corners. Furthermore. tile

correspondence problem has to be solved, that is, feature points from consecutive

frames have to be matched.

Figure 1-:3 shows the edge map for the top image in fig. 1- 1. Several correspondence

methods use such edge maps as the basic source of data instead of the original image.

Then, they try to find some common features in different edge maps and relate theml

together.
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Figure 1-3: The edge maps for each of the images in the sequence.

1.2.3 Direct methods

The use of optical flow or correspondence techniques for solving motion vision prob-

lems has proven to be rather unreliable and computationally expensive [84, 83, 34].

These techniques spend a lot of effort on transforming the original images to the

optical flow or the edge maps. The assumptions made in these procedures result in

errors and loss of some useful information which exists in the original images.

These problems have motivated the investigation of direct methods which use the

image brightness information directly to recover the motion and shape without any

need to preprocess the original image.

Previous work in direct motion vision has used the Brightness- Changr Constraint
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Equation (BCCE) for rigid body motion [44]

s'*t
Et±+v'w+ S 0 (1.1)z

to solve special cases such as known depth [:30], pure translation or kn'ou,in rotatiorn

[31], pure rotation [31], and planar world [44]. Chapter 2 describes the details of this

nonlinear equation which relates depth Z, translational velocity t. and rotational

velocity w together.

All these direct methods are restricted in the types of motion or shape that they

can handle. Our aim is to solve the motion vision problem in the general case using a

direct method but without restricting either the motion or the shape to any special

case.

1.3 Fixation Approach

This thesis presents a direct method called fixation for solving the motion vision

problem in the general case without placing any restrictions on the motion or the

shape [65, 69, 60]. The fixation method is based on the theoretical proof that for a

sequence of fixated images (a sequence of images with one stationary image point in

them), the 3D rotational velocity w can always be explicitly expressed in terms of a

linear function of the 3D translational velocity t. Namely,

w = ,RRoa + -11 (t x Ro) (1.2)

where fl. is the unit vector along the position vector of the fixation point (a point

in the image plane which stays stationary) and wR, is the component of rotational

velocity about the fixation axis Ro.

It should be emphasized that we do not need to know the real fixation point, if

there is any, to take advantage of this fixation constraint equation (FCE). eqn. 1.2. In
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fact. our algorithm allows us to choose virtually any point as the fixation point and

obta.'n a sequence of fixated images [65, 69] by a simple software manipulation of one

of the original images

The combination of the Fixation Constraint Equation (FCE). eqn. 1.2. and the

BCCE, eqn. 1.1 offers a solution to the motion vision problem of arbitrary motion

relative to an arbitrary rigid environment. That is. it allows recovery of the depth

map Z, total 3D rotational velocity, and 3D translational velocity t without placing

severe restrictions on the motion or the shape [65, 69].

1.4 Contributions

A summary of the principal contributions of this thesis are as follows.

e Derivation of the Fixation Constraint Equation:

Deriving a strong constraint equation called the fixation constraint equation (FCE).

This constraint equation has a solid mathematical foundation. It expresses that for a

sequence of fixated images, the rotational velocity can always be explicitly expressed

as a linear function of translational velocity [69, 62, 61]. This equation is general and

no hidden assumptions were made in its derivation.

* Obtaining a solution to the general motion problem:

Introducing a direct method called the fixation method which provides a solution for

the general motion vision problem and has the following properties [69, 60. 6:3] :

- Finds the motion (translational and rotational velocities), and shape (the fnriron-

ment structure) from two monocular images.

- Does not restrict the motion or shape,

- Does not use either optical flow or feature correspondence.

- Is computationally simple.

0 Tracking without moving the camera:

Present-ig a novel method called the pixel shifting process for constructing a sequence
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of fixated (tracked) images from any arbitrary image sequence. [65. 64]. It allows an

arbitrary choice of fixation point, is fully software based, and does not require moving

the camera for tracking.

e Autonomous choice of an optimum fixation patch size:

Finding a technique for autonomous choice of an optimum fixation patch size which

results in good estimates for the motion parameters. This technique is based on

defining a norm called normalized error and has been successfully implemented and

tested on real images [68. 72, 66].

a Autonomous choice of an appropriate fixation point location:

Some regions of a given image are better for using a fixation patches. \\e have

developed a method for autonomous choice of an appropriate fixation point location

[67, 72].

* Rotation axis calibration:

Introducing a procedure for the calibration of a rotation axis in imaging systemns. This

technique is simple but useful and results in avoiding potential implementation errors

[70, 72].

* Representing image gradients:

A novel method has been presented for visual representation of the spatio-ttmporal

gradients. These intensity gradient maps allow one to visually understand the char-

acteristics and significance of the brightness gradients [73. 70].

* Constructing fixated (tracked) image sequences:

Using the pixel shifting process and a bilinear interpolation technique we have con-

structed fixated images from real images [73, 70].

* Depth map recovery from two monocular real images:

We have recovered good depth maps from two monocular real images using the fixa-

tion method [71. 70].
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1.5 Thesis Structure

This work comprises of three parts: Theory, Implementation, and Appendices.

1.5.1 Part I: Theory

This part covers the mathematical background of direct methods and the detailed

theory of fixation.

* Chapter 2

We begin with a description of the camera model and coordinate system used in

this work. Then, the brightness change constraint equation (BCCE) used by direct

methods is explained.

* Chapter 3

This chapter presents the main idea behind our fixation method. It shows how the

Fixation Constraint Equation (FCE) is derived and how it can be combined with the

BCCE in order to solve for the translational velocity t. rotational velocity w. and tile

depth Z at any image point.

e Chapter 4

In an arbitrary image sequence, a point chosen as the fixation point does not neces-

sarily stay stationary in the image plane. This chapter introduces the algorithms for

the estimation of the apparent velocity at the fixation point (fixation velocity) which

are required for the construction of a sequence of fixated images. Simultaneously.

these algorithms find an estimate for the component of the rotational velocity along

the fixation axis, wR., which appears in the FCE.

• Chapter 5

The fixation method requires a sequence of fixated images. This chapter shows how

a sequence of fixated images can be constructed from an arbitrary image sequence

using the components of the fixation velocity.

* Chapter 6
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This chapter ends the basic theoretical part of the thesis by giving an overview of the

main modules involved in the fixation method.

1.5.2 Part II: Implementation

This part presents the experimental results of applying the algorithms given ill Part

I to real image sequences. The implementation issues are described along with tech-

niques for dealing with some practical problems.

* Chapter 7

The spatio-temporal brightness gradients of the images are the primary source of

data used in our fixation method. This chapter introduces a novel technique for

representing the gradients of real images. Such representations allow us to have a

better insight about the characteristics and significance of gradients.

* Chapter 8

The experimental results in this chapter show that the estimated values for the com-

ponents of the fixation velocity and wCR. depend heavily on the size of the image

patch used in the computation. It will be shown that depending on the image, and

the fixation point location, there are some patch sizes which result in good estimates

for the desired motion parameters.

* Chapter 9

This chapter presents a novel and reliable technique for autonomous choice of an

optimum fization patch size that results in good estimations for the motion parameters

from real noisy images.

* Chapter 10

The fixation method does not place any restrictions on the choice of the fixation

point and virtually any point can be chosen as the fixation point. However. some

considerations should be taken into account when choosing a fixation point. For

example. choosing a point at the center of a patch which has uniform brightness is not

good because the motion is not detectable. This chapter introduces an autonomous,
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technique for choosing an appropriate fixation point.

* Chapter 11

Not only in our fixation technique but also in many other methods there is a substan-

tial need for a sequence of fixated (tracked) images. This chapter introduces a novel

method (pixel shifting process) for constructing a sequence of fixated images from an

arbitrary image sequence using the components of the fixation velocity.

e Chapter 12

U'sing the estimated motion parameters and the constructed sequence of fixated im-

ages. this chapter describes the issues involved in recovering depth maps. Detailed

techniques are presented for overcoming practical problems such as noise and inherent

image deficiencies.

9 Chapter 13

Camera calibration is usually an unavoidable requirement for working with real im-

ages. This chapter discusses some of the calibration issues that we faced in this

work.

* Chapter 14

We conclude this work by giving a summary of the fixation method, results. features,

assumptions, shortcomings, relation to other works, and finally some thoughts on the

possible future extensions.

1.5.3 Part III: Supplements

Some of the relevant theoretical proofs and formulations are summarized in this part.

* Appendix A

Provides a detailed derivation of the BC'CE.

• Appendix B

Presents the formulations for computing the spatio-temporal gradients.

e Appendix C

Describes a technique for computing the depth at the fixation point. Zo.
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Direct Methods
Chapter 2

Images are usually obtained from a regular electronic camera where the projection

is perspective. In this chapter, we first describe the camera model and the coordi-

nate system used in this work. Then, a mathematical background of the BCCE is

presented.

2.1 Modeling and Coordinate System

As shown in fig. 2-1, the coordinate system is attached to the camera so that its origin

is located at the projection center.

The image plane is where the environment image is projected to. In an electronic

camera, a CCD (Charge Coupled Device) plays the role of the image plane. The CCD

is an electronic light-sensitive plane. It consists of a tessellation of small rectangular

or square photo-sensitive cells which are called pixels. Each pixel of the CCD is

electronically charged depending on the number of the photons it receives. Thus, the

charge level of each pixel is a representation of the brightness at the corresponding

point in the image plane. By reading and appropriate conversion of the camera charge

level of all pixels., the image can be written in a file or displayed on a screen.

The image plane in our coordinate system is parallel to the X - Y plane and is

located at a distance equal to the focal length from it. The optical axis Z pierces the

image plane at a point which is called the principal point. Any environment point R

is projected to an image point r in this coordinate system.

2:3
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~Pixel

AY

Environment Point Projection center
"� Image Point (Focal Point)

I .• :.•Focal Lengthx

Image Plane
Principal Point (CCD)

Optical Axis
Environment

Figure 2-1: The coordinate system is attached to the camera and the projection is
perspective.

2.2 Basic Definitions

Using a viewer-centered coordinate system which is adopted from Longuet-Higgins &

Prazdny [36] is very common in direct motion vision. Figure 2-2 depicts the coordinate

system under consideration.

In such a coordinate system, a world point

R = (X V Z)T (2.1)

is imaged at

r = (x y 1)T. (2.2)

That is, the image plane has the equation Z = 1 or in other words the focal Itngth

f is 1. The origin is at the projection center and the Z-axis runs along the optical
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Y1

!t

•\ /

\ /

Figure 2-2: Under the effect of translational velocity of the viewer is t = (U V W)T

and rotational velocity is w = (A B C)T, any environment point R has the velocity
Rt from the observer's point of view.

axis. The X and Y axes are parallel to the x and y axes of the image plane. Image

coordinates are measured relative to the principal point, the point (0 0 1)T where the

optical axis pierces the image plane. The position vectors r and R are related by the

perspective projection equation

r = (xy l)T = (X y Z)T =R(23
(Zz z R 23

where i denotes the unit vector along the Z-axis and R i = Z.

When the observer moves with instantaneous translational velocity t = (U V U)T

and instantaneous rotational velocity w = (A B C)T relative to an environment, then

the time derivative of the position vector of a point in the environment. R, relative
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to the observer can be written as

R, = -t- w x R. (2.4)

The motion of the world point R results in the motion of its corresponding image

point r. It can be shown that the motion field in the image plane is obtained by

differentiating eqn. 2.3 with respect to time as in [44]

rt = d ( R ) = x ( x (2.5)

Substituting for R, r and R, from equations 2.1, 2.2, and 2.4 into eqn. 2.5 gives

[:36, 141
xt • Z + Axy -B(x2+)c

r,= ( -V+Uw _ Bxy + A(y2 + 1) - CX (2.6)

zt 0

This result is just the parallax equations of photogrammetry that occur in the incre-

mental adjustment of relative orientation [23, 42]. It shows how, given the environ-

ment motion, the motion field can be calculated for every image point.

2.3 The Brightness Change Constraint Equation

Image brightness changes are primarily due to the relative motion between an en-

vironment and an observer provided that the surfaces of the objects have sufficient

texture and the lighting condition varies slowly enough both spatially and with time.

In such cases (which may occur in practical applications), brightness changes due to

the variations in the surface orientation and illumination can be neglected. (onse-

quently. we may assume that the brightness of a small patch on a surface in the scene

does not change during iihotion. As shown in appendix A. when the motion is small
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the expansion of the total derivative of brightness E leads to

dEd--- = Et + xtEx .+- ytE = 01 (2.7)

known as the Brightness Change Constraint Equation (BCCE) where (E,. E,) and

Et are spatial and temporal gradients of the image brightness at any given pixel

[30. 54. 291.

Note that eqn. 2.7 does not hold for the special case that the viewer and the

light source are stationary and the environment moves relative to them because the

brightness of a surface patch does not remain constant in this case.

2.3.1 Rigid body motion

In rigid body motion, there is only one relative motion between the observer and the

environment. For this case, we can substitute for xt and yt from eqn. 2.6 into eqn. 2.7.

to obtain the brightness-change constraint equation for the rigid body motion [44] as

Et+v'-w+ t =0. (2.8)z

This equation is nonlinear in terms of unknowns rotation W, translation t, and depth

Z. The auxiliary vectors s and v are known at any pixel (x, y) and are defined as

s= -EY (2.9)

SxE, + YE,,

'To account for smooth variations in the image brightness due to other factors such as shading,
spatial and temporal illumination changes, and variations in reflectance properties. the BC('E can
be extended to

Et + xtE, + yiEY = rotE + ct

where in general n, and c, are time and position dependent [21, 45]. Cornelius k Kanade [17] also
propose a method which allows gradual changes in -. These extensions are not discussed here
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and
a n d + E , + y ( x.,E + y E ,)

V= -E, - x(.rEx + yEj) (2.10)

yE, - xE )
Since s* r = 0, v r = 0 and s v = 0, the vectors r, s, and v form an orthogonal triad:

see fig. 2-3. The vectors s and v represent inherent properties of the image. Also it

can be shown that v = r x s. The vector s indicates the direction in which translation

of a given magnitude will contribute maximally to the temporal brightness change of

a given picture cell. The vector v plays a similar role for rotation.

v=rxs

r

Figure 2-3: At any pixel, vectors r (pixel position), s, and v form an orthogonal triad.
Also v = r x s.

The BCCE. eqn. 2.7, does not change if we scale both Z and t by the same factor.

Consequently. we can determine only the direction of translational velocity and the

relative depth of points in the scene. This ambiguity is known as the scale-factor

ambiguity in motion vision.

Equation 2.7 is obtained under the following assumptions:

* No noise,

* Sufficient surface texture.



2.3: The Brightncss Changc Constraint Equatinn 29

* Slow spatio-temporal variations in lighting,

* Small motions between frames.

In real images, violation of any of these conditions may cause eqn. 2.7 not to be

held at any single pixel. However, later we will show how this equation can be used in

a least squares method for recovery of shape and motion from real image sequences.
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Fixation Formulation
Chapter 3

Our common visual experience suggests that fixation may play an important role

in the analysis of moving objects. When we want to understand the motion of an

object. we do not keep our eyes and head stationary in front of the moving object.

Instead, our head and/or eyes follow the moving object, in order to keep the image

of a point of interest stationary in the retina. There are also some formal studies

that support such observations [6, 7, 9]. In this computer vision work, the fixation is

defined as:

Given two subsequent images, 1st and 2nd initial images. and an arbitrary

point in the 1st initial image, find a new image, a 2nd fixated image. such

that the image of the selected point in the new image is located at its

original position as in the 1st initial image.

This definition of fixation is shown schematically in fig. 3-1. If we choose point 1

in the Ist initial image as the fixation point, its image in the 2nd initial imagc may

move to a new location such as 2. In chapter 5. we introduce a simple technique for

converting the 2nd initial image in order to bring image point 2 to the same physical

location as point 1. This process will construct the 2nd fixated image and form a

sequence of images fixated at point 1.

As shown in fig. 3-2. we refer to this arbitrary selected image point as the fixation

point. r.. and to its corresponding point on the object as tile intrest point. Ro.

31
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Fixation Point

A Sequence of Fixated Images
(at Point 1)

-/
I

1st Initial Image /

I/
I

1 1

%\% 2

2nd Initial Image 2nd Fixated Image

Figure 3-1: A schematic interpretation of fixation point and firahd irnag( stqutfnet.

3.1 Derivation of the General Fixation Constraint

Equation

For a sequence of two fixated images. at the fixation point r, we should have

r., = 0 (3. 1
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Y

Fixation Point Fixation Axis

R.2

Z

Figure 3-2: In the fixation method, the image of the interest point, the fixation point.

is kept stationary in the image plane despite the relative motion betweer the camera
and the environment.

where rot is the time derivative of the fixation point vector and similar to eqn. 2.5 it

can be written as

Si x (R ot x r.) (3.2)rot =(.) Ro • i;

Rot is the time derivative of the interest point vector. Combination of equations 3.1

and 3.2 shows that for fixation we need to have

i x (Rot x ro) = 0. (3.3)

In other words. we want to find out when Rot x ro is zero or parallel to i. For Rt x r.

to be parallel to i. we should have r. perpendicular to i which is not possible with a

finite field of view. so only Rot x r0 = 0 applies. Consequently. considering that Ro
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and r, have the same direction, eqn. 3.3 is simplified as

R., x Ro = 0 (3.4)

Now substituting for Ro= -t - w x R., eqn. 2.4. into eqn. 3.4 gives

(w x Ro) x R. + t x Ro = 0. (3..5)

Expansion of eqn. 3.5 by using (a x b) x c = (c • a)b - (c. b)a results in

(RO W)Ro - (R.- Ro)w + t x R. = 0. (3.6)

As long as the translational velocity t is neither zero nor parallel to the interest

point vector Ro, then any vector, including w. can be expressed in terms of the triad

of vectors Ro, t x Ro and t. So we can write w in its general form as

w = aRo + 3(t x Ro) + it (3.7)

where a, 3 and -' are parameters to be determined. Later in this section we will

consider the special cases where t is zero or parallel to K, by defining W based on

another triad of vectors.

Substituting for w from eqn. :3.7 into eqn. 3.6 gives

[1 - 3(Ro. RoJ)(t x R.) + "(Ro- t)Ro - "(Ro • Ro)t = 0. (..8)

Now. we should find the parameters ý3 and 1 such that eqn. :3.8 holds without placing

any restrictions on either Ro or t. We start by finding the dot product uf eqn. 3.,

with t x R. which results in

[1 - 3(Ro - Ro)]j[t x Ro.11 = 0. (:.9)
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Equation :3.9 will hold without restricting either R, or t if

1
3 = 1 (:3.10)

Another possibility for satisfying eqn. 3.9 is to have lit x Ro.1 = 0 which implies that

either t or R. is zero, or t is parallel to R,. But R. cannot be zero and also we

assumed that here t is neither zero nor parallel to R.. As a result, lit x R.11 cannot

be zero.

Similarly the dot product of eqn. 3.8 with t gives

y(Ro" t)(Ro • t) - .,(Ro - Ro)(t • t) =0. (3.11)

Knowing that (a x b) . (c x d) = (c.a)(b-d) - (b.c)(d .a), eqn. 3.11 can be simplified

as

"yllt x Roll" = 0. (3.12)

We discussed that lit x R.11 cannot be zero here, so eqn. 3.12 is satisfied only if - is

zero

-•= 0. (3.13)

Substituting for 3 from eqn. 3.10 and -y from eqn. 3.13 into eqn. 3.7 gives

1
w = aR 0 + I (t x Ro) (3.14)

where a is still unknown. This means that the component of the rotational velocity

along Ro cannot be determined by the fixation formulation. Physically this makes

sense because the rotational velocity along R0 , denoted by ;R., does not move the

fixation point. This observation leads us to find wR, in a separate step before using

the fixation formulation results. Derivation of ,-R. will be shown in chapter 4.
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As a result. the fixation constraint equation (FCE) is written as

w =,'RAo + (tXA) o3.15)

where t is the translational velocity and R. = i, is the unit vector along the position

vector of an arbitrary fixation point, an arbitrary point in the image chosen for

fixation. Equation 3.15 shows that after fixation, the rotational velocity w can be

explicitly expressed as a linear function of the translational velocity t.

3.1.1 Derivation of special fixation constraint equation

When the translational velocity t is zero or parallel to the interest point vector R,.

eqn. :3.6 is simplified as

(R. • w)Ro - (Ro. Ro)w = 0. (3.16)

This time, w is defined based on the triad consisting of vectors R,. k. and * x R. as

w =/1R + m(ic x Ro) + n* (3.17)

where 1, m, and n are parameters to be determined. Here we assume that Ro is not

parallel to k. This is a reasonable assumption because otherwise we should at lea&t

have a field of view of 1800 to be able to choose an awkward interest point along the

X-axis, which results in a fixation point at an infinite distance from the principal

point and near the border of an infinite image plane.

Substituting for w from eqn. 3.17 into eqn. 3.16 gives

n(Ro. - )Ro - m(Ro. R.)(5 x R.) - n(Ro • Ro)* = 0. 13.1I's)
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The dot product of eqn. 3.18 with (x x R.) results in

- m(Ro. Ro)ji x R.11' = 0. (:3.19)

Considering that Ro cannot be either zero or parallel to R, eqn. :3.19 is satisfied only

if in is zero

M = 0. (3.20)

Substituting for in into eqn. 3.18 and finding its dot product by R results in

n(Ro. *)(Ro • k) - n(Ro. Ro)(* • R) = 0. (3.21)

Using (a x b) (c x d) = (c . a)(b -d) - (b c)(d a), eqn. 3.21 can be written as

ni1h x R.11'2 = 0. (3.22)

Again R. cannot be either zero or parallel to k. As a result, eqn. 3.22 will hold for

arbitrary Ro if n = 0. Substituting for n and m into eqn. 3.17 gives

w = IR. (3.23)

where I is still unknown. We can substitute WRoR1o for 1R.. The procedure for

computing the component of rotational velocity along the fixation axis. L,:Ro, will be

given in chapter 4. Consequently, for the special cases we obtain the special fixation

constraint equation (SFCE) as

w = wORoRo (:3.24)

which means that when the translational velocity t is zero or parallel to Ro then the

corresponding rotational velocity may only have a component along Ro.

This procedure for deriving the SFCE, eqn. 3.24. is not essentially different from

what we did for deriving the FCE. eqn. 3.15. In fact. eqn. :3.24 is a special case of
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eqn. 3.15. But we did not directly derive eqn. 3.24 from eqn. :3.15 because eqn. 3.15

was derived based onl the assumption that t is neither zero nor parallel to Ro. As a

result, for implementation it is enough to use the FCE, eqn. :3.15. without knowing

whether the present condition is a special case or not.

3.1.2 Interpretation of the FCE

We gave a detailed mathematical proof for derivation of the fixation constraint cqua-

tion (FCE), eqn. 3.15. This constraint equation indicates that for a sequence of

fixated images, the rotational velocity w can always be expressed as a linear function

of the translational velocity t. This section examines whether the FC'E makes sense

phsically.

The first term WRoRo says that w can have an unrestricted component along the

fixation axis A.. This is correct because such a component does not cause the fixation

point to move and as a result the fixation is not violated.

The term of the FCE, - j(t x Ro), conveys two points:

* The translation t can have an arbitrary component along the fixation axis R0

because such a component does not move the fixation point in the image plane.

e The rotational velocity w should have a component perpendicular to ft. and be

large enough to compensate for the component of the translational velocity t which

is perpendicular to k.o in order to keep the fixation stationary in the image plane.

We can conclude that the FCE has a meaningful physical interpretation.

3.2 Solving the General Direct Motion Vision Prob-

lem

At this stage, we assume that a sequence of two fixated images have been constructed.

In other words, we have made the fixation point stationary in the image plane. This

can be (lone first by finding the fixation 17clocity. the apparent velocity at the fixation
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point in the 1st image, as shown in chapter 4. Then the pixel shifting process explained

in chapter 5 can be used for constructing a new image. the 2ndfixated image. in which

the image of the interest point is positioned at the same point as in the 1st initial

image.

We start by studying the general case where the translational velocity t is neither

zero nor parallel to the interest point vector R,. The special cases of t will be

discussed later.

Substituting for w from the fixation constraint equation 3.15 into the brightness-

change constraint equation 2., gives

Et + WRoV" PRo + 1- [v .(t X Ao)] + ±(s. t) = 0. (3.25)

Knowing that a. (b x c) = (a x b) • c and doing some manipulations on eqn. :3.25

results in

El + [-s .jno-l(V x R0 )]. t = 0 (3.26)

where E' is a notation for Et + WRV. R0 which is computable at any pixel assuming

that wRo is known. In chapter 4, we will introduce a technique which finds a good

estimate for wRo.

In general, eqn. 3.26 can be solved numerically for t and Z using images of any

size and with any field of view. For a small patch around the fixation point, called a

fixation patch, eqn. 3.26 can be simplified as

1 1
Et+ ( - o . t) .(3.27)

'Considering that 11R.11 = ZoIIroII and v = r x s, the term .,,(v x R× ) from eqn. :3.26. let's

call it K, can be expanded as

K = 7zý7(r x s) x

Further expansion of K by using the relation (a x b) x c = (c a)b - (c b)a, results in

/,[r= -[(ro r)s - (r. s)r].
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As described in the footnote, the approximation made here is based on a purely

geometric assumption and is not related to the image properties. For example. we

are not making any assumptions about the depth topology. We simply assume that

motion parameters can be obtained using a small fixation patch. As shown in fig. 3-3.

the smallness of such a patch translates into the smallness of an angle a. Numerous

Fixation Patch S
0

0 /ý //.
Fixation Point

0

Figure 3-3: A schematic interpretation of fixation point and fixated image sequence.

experimental results in chapter 9 show that indeed good motion estimates are obtained

using optimum patch sizes with a field of view small enough to justify this assumption.

In analogy to the pure translation case of [31], we can find the translational velocity

t. Equation 3.27 shows that 1 -! - - . At the points where E' is very small.

even a small error in computing t will result in large error in '/(z - Z) which

translates into large error in the estimation of depth Z. Considering this fact. the

true translational velocity t can be found from eqn. 3.27 by minimizing

I - I) 2 dxdy = t)'dxdy i:3.2S)

It is clear that at the fixation point. %,here r = r. and s = so IN, = and for the points near the
fixation point K ý- '-s.
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with respect to t. In other words, we are looking for the true motion t which minimizes

the sum of squares of 21 over the fixation patch. Note that this minimization doesE,'

not force Z towards Zo because at Z = Z. the value of J becomes infinite.

We also put the j(tjj = 1 constraint on this minimization problem to avoid the

trivial solution t = 0. This is a valid constraint on t because due to the scalt factor

ambiguity we can only find the direction of t. This constraint on t can be written as

tTt 1 (:3.29)

Moreover we can rewrite J as

J = tT~ut (3.30)

where M is a fully computable 3 x 3 symmetric matrix

M= jj( )2ss dxdy. (3.:31)

Minimizing J in eqn. 3.30 under the constraint eqn. :3.29 is an ordinary calculus

constrained minimization problem which can be solved by minimizing

I(t, A) = tTMt + A(1 _ tTt) (3.32)

with respect to t and the Lagrange multiplier A. Then, we will obtain

al = 2Mt - 2At = 0 (3.3:3)
at

which is simplified as

Mt = At. (3.34)

Equation 3.34 is an eigenvalue problem where A is an eigenvalue of the known matrix

Ml and t is the corresponding eigenvector. The eigenvalues of Al are real and nonnega-

tive because .l is a positive semidefinite Hermitian matrix. Substituting for Alt from
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eqn. :3.34 into eqn. :3.32 gives I = A which implies that under the given constraint.

tTMt is minimized when the smallest of three real and nonnegative eigenvalues is

used for computing the eigenvector t.

It is shown that the fixation method can be used for solving the motion vision

problem in its general case. The translational velocity t is obtained from eqn. 3.34

by using the smallest eigenvalue and computing its corresponding eigenvector. Then

we can use eqn. 3.26 for finding the depth map, a depth at each image point, as

S(S t) (3.35)
lip-Oil Et

Then. eqn. 3.15 gives the partial rotational velocity w

1

W Ro k + I (t x1) (3.36)

where 11Ro11 = ZolroII and Zo is the depth at the fixation point. Appendix (C intro-

duces a technique for estimating Z0.

The total rotational velocity of the observer relative to the environment is obtained

by adding w to the equivalent rotational velocity 0 given in chapter 5. It can be seen

that for the general case, the fixation formulation lets us find the shape and motion

by choosing virtually any point as the fixation point.

3.2.1 Special cases: t is zero or parallel to R.

When the translational velocity t is zero, we showed that the partial rotational ve-

locity w has only a component about the fixation axis R,. eqn. 3.24. The technique

for computing this component of rotational velocity is given in chapter 4. For this

special case, pure rotation, there are also methods for finding the total rotational

velocity using the initial unfixated images [31]. In the case of t = 0. we basically

cannot obtain any estimation for the depth Z.
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For the other special case that t is parallel to R0, we substitute for w from eqn. 3.24

into the BCCE eqn. 2.8 to obtain

El + I(s. t) = 0 (3.37)

where E, is again a notation for the computable term Et + wRoV .o. Because no

approximation is involved in deriving eqn. 3.37, an exact closed form solution exists

for t and Z without any restriction on the field of view or the size of fixation patch.

This exact solution for finding t and Z is the same as the solution given in the general

case. starting from eqn. 3.28, except that J is defined as ff Z 2ddxdy for this special

case.
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Computing the Fixation Velocity
and Rotational Component WR

Chapter 4

In an arbitrary image sequence, a point chosen as the fixation point does not

necessarily stay stationary in the image plane. We use the term fixation velocity to

refer to the apparent velocity at the fixation point in the initial 1st image. As shown

in fig. 4-1, the x and y components of the fixation velocity are represented by uo and

v. respectively.

The fixation method requires a sequence of two fixated images in which the fixation

point stays stationary, rot = 0. A fixated image sequence can be obtained by first

finding uo and vo, and then using these components to construct a new image, the

fixated 2nd image. The technique for the construction of the fixated 2nd image (pixel

shifting process) is explained in chapter 5.

We also saw that the component of the rotational velocity along the fixation axis.

-JR,. cannot be obtained from the fixation formulation because this component does

not move the fixation point.

In this chapter. we will introduce an algorithm for obtaining not only the rotation

--:Ro but also the components of the fixation velocity. U, and V0.

45
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Y

Fixation Point Fixation Axis

\ 0" •

x

Figure 4- 1: In general, for any point chosen as the fixation point, there is an associated
apparent velocity (fixation velocity), and a rotational component along the fixation
axis. wRo. The components of fixation velocity are shown by (u., v,).

4.1 Algorithm

The motion field velocity due to the rotational velocity component •,Ro is given by

--(WR x r) = -WRo(lR x r) = -- o(r. x r). where it. = io is the unit vector

along the fixation axis r.. Considering a small patch around the fixation point, and

substituting r. = (x. yo I)T and r = (x y 1)T, the components of the total motion

field velocity due to the fixation velocity and wR., are given by

Xt = Uo-# 1-- k .(ro x r) = Uo+=ZRo(Y-Y-o)11ro11 •(4.1)

Yt = vo- il -(rol xr) = V0 -DR.(x - x-)

where :k and $' are the unit vectors along the x and y axes and 4R. is a notation for
"R" Substituting for x, and yt from the above equations into the BCCE. eqn. 2.7.
11ro11

gives

[Uo + 'Ro(Y - Yo)]EEr + [V- - DhRo(X - x.)]E, + E, = 0. 1-1.21



,1.41: Algorithm 47

Due to noise, eqn. 4.2 does not necessarily hold for any point (x, y). Thus. we try

to find uo. vo and 4'R. by minimizing the sum of squares of errors over the fixation

patch. In other words we want to minimize

!![(Uo +ZR.°(Y- yo))Ex + (Vo DR. (x- xo))E•, + Et]'dxdy (4.3)

with respect to uo. V, and C'R0 . This results in a system of three linear equations

that can be solved for the three unknowns

a 21 a 2 2 a 2 3  Vo = C2 (4.4)

a 3 1 a 3 2 a 3 3 j ;)R. c 3

Matrix A is symmetric and its elements are given by

a12 = ff E.Edxdy

a13 = ff E,[E.(y- yo)- E,(x- xo)]dx dy

a23 = ff Ey[E.(y - y.) - E,(x - xo)]dx dy

al1 = ff E.dx dy

a22 = ffE2dxdy

a33 = ff[E.(y - yo)- E,(x -.r)] 2dxdy

and the components of vector C are as follows:

cl = -ff EtEjdxdy

C2 = -ff EEdxdy (4.6)

C3 = -ff Et[E.(y - y.) - Ey(x - xo,)]dx dy.

Considering that the fixation point coordinates xo and y. are known. tile sets of

equations 4.5 and 4.6 show that the elements of matrix A and the components of

vector C are fully computable.
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4.2 Discussion

When the spatio-temporal gradients are zero, matrix A is irreversible because all of its

elements are zero. As a result, we will not be able to compute the motion components

in such a case. Chapter 10 explains how to avoid this by an autonomous choice of

an appropriate fixation point that is not located in a patch with uniform brightness.

Furthermore, for implementation we make sure that the determinant of matrix .4 is

nonzero before advancing into the computations.

In the special case where the fixation point is at the principal point. t = Yo = 0.

elements of matrix A are simplified as

a 1 2 = ff EEdx dy

a13 = Hf Ex(yE- - xE.)dx dy

a23 = ff Ey(yE 1 - xE,)dxdy

all = ff Edxdy

a22 = ff E2dxdy

a33 = ff(yE, - xE ,)'2 dx dy

and components of vector C are given as follows

I c
1

= -ff EE.dxdy

c2 = - ff Et EYdr dy (4.8)

C3 = -If Et(yEx - x E,)dxdy.

After finding DR,0 we can easily compute ,;R. = ZRo /X.r + Y1 + 1. (Clearly. when

the fixation point is at the principal point, wRo becomes equal to &R.

The algorithm given in this chapter has been successfully implemented on real

images and good estimates have been obtained for the fixation velocity components

and wRo. Chapter 8 describes the implementation results.



Constructing a Sequence of
Fixated Images

Chapter 5

The fixation method requires a sequence of two images in which the fixation point

is kept stationary. However, the input can be an arbitrary sequence of two images

that we shall call the 1st initial and 2nd initial images. The 1st initial image is used

directly as the 1st fixated image but we need to find a 2nd fixated image using the

2nd initial image.

Physical rotation of the camera relative to the observer base is a hardware solution

to this problem which is basically a tracking problem. Considering that in general

the interest point has a motion relative to the observer, the 2nd fixated image cannot

be obtained in one step. As a result, a feedback control loop is required for the

camera rotation system to compensate for the errors resulting from the new position

of the fixation point. This tracking approach is to be avoided not only because of the

potential errors involved but also because of concern about real time applications.

In this chapter, we will show how a 2nd fixated image can be constructed by a

purely software technique, the pixel shifting process. It involves applying an imaginary

rotation to the vision system and determining the corresponding transformation which

affects the 2nd initial image.

-19
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5.1 Equivalent Rotational Velocity

If point 1 is chosen as the fixation point in the 1st initial image. then in general its

corresponding image point in the 2nd initial image moves to a new location such as

point 2: see fig. 5-1.

V

Fixation Axis / -

Figure 5-1: An imaginary rotation opposite to the equivalent rotational velocity. -Q.
is applied to the vision system to bring point 2 to point 1. This rotation transforms
the 2nd initial image into the 2nd fixated image.

Determining the location of point 2 is equivalent to the estimation of the fixation

velocity. Chapter 4 introduced a technique for the estimation of the fixation velocity.

The experimental results in chapters 8 and 9 will also show that the fixation velocity

can be estimated reliably even from real and noisy images. As a result, it is assumed

here that the fixation velocity has been already computed from eqn. 4.4.

There are infinite combinations of translations and rotations which can be ap-

plied to the vision system or camera to bring the image point at 2 to the locatiun 1.

Among all these combinations, we choose to accomplish the task by a pure rota-
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tion. To find the desired rotation, we first introduce an equivalent rotational velocity,

•= (Q•, Qu, f), as a rotation which can result in the same fixation velocity (u.. t,)

at the fixation point (xor, yo). According to eqn. 2.6. the components of 01 must satisfy

the following set of equations

U0 = xoyo:X - (X' + 1)QSy + y,(3.1

V+ = (y ) XoYo+l - xo0Q. (5.1)

There are also infinite configurations of fl that satisfy the system of equations in 5.1.

However, we choose the only one that does not introduce any new rotational velocity

along the fixation axis ro. Mathematically it is equivalent to having Q. r. = 0 which

results in an extra constraint on the components of fl,

XoQ + YoSly + QZ = 0. (5.2)

This constraint guarantees that the value of wRo obtained by applying the system of

equations 4.4 to the two initial images is also valid for the fixated images. As a result,

no adjustment in wRo is needed before using it in equations 3.35 and 3.36 which must

be applied to a sequence of fixated images.

Considering that the fixation velocity (uo, v.) and the fixation point coordinates

x. and yo are known here, the equivalent rotational velocity f1 is obtained by solving

the combination of three linear equations in 5.1 and 5.2. For example. in the case

that the fixation point is at the principal point, X. = yo = 0, the equivalent rotational

velocity becomes,

fl = (V,-Uo, 0). (3.3)

However, it should be emphasized that fixation point is not restricted to the principal

point and virtually any point can be chosen as the fixation point.
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5.2 Constructing the 2nd Fixated Image

After obtaining the equivalent rotational velocity [f, the task of constructing the

2nd fixated image is equivalent to finding the transformation experienced by tile 2nd

initial image when tile imaginary rotation -Q is applied to the vision system.

Considering eqn. 5.1, the following set of equations give the component of tile

corresponding shifting vector (u, v) for any pixel (x, y) of the 2nd initial image

S= - xyfl• + (x 2 + 1)S y - -(5.4){ v = -(y 2 + M)I + xyfQy + xQZ.

Here £?,, Q. and Q., are known values. As a result, the shifting vector (u. v) can be

obtained for every pixel of the 2nd initial image.

Figure 5-2 shows the process of constructing the 2nd fixated image using the 2nd

initial image, called the pixel shifting process. The brightness at pixel (x. y) of the 2nd

x -Tu x

I . . .. . I .r. .. ..I
II I

(E) -----------

y -Tv - 4

- I I I i
I i I

-------------- Ii ..... --------...

2nd Initial Image 2nd Fixated Image

Figure 5-2: The pixel shifting process for constructing the fixated 2nd image from the

"2nd initial image.

fixated image is the same as the brightness at the corresponding point (x - Tn. y - T'

in the 2nd initial image. where T is the time interval between two initial images. In

general. a computed original point is not located at the center of a pixel in the 2ndi
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initial image. As a result, its brightness cannot be read directly from the image file

and should be computed by averaging, bilinear interpolation or bicubic interpolation

of the bTightnesses at its neighboring pixels.

It should be clear by now that we neither require the fixated images to be pro-

vided in advance nor do we use mechanical tracking for obtaining the fixated images.

Construction of the 2nd fixated image is based on the pixel shifting process. This is

done entirely in software and no tracking is involved in this technique. In chapter 11.

we will show the results of implementing this purely software based technique for

constructing a sequence from fixated images for several real image sequences.
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An Overview of the Fixation
Method

Chapter 6

The algorithms and formulations presented in the previous chapters show how to

solve directly for the motion and shape in the general case. In contrast to previous

work done in the area of motion vision, our technique is general and does not put

any severe restrictions on the motion or the environment. More importantly. the

fixation method uses neither optical flow nor feature correspondence. Instead, image

information such as temporal and spatial brightness gradients are used directly. This

method neither requires tracked images as input nor uses tracking for obtaining fixated

images. Instead, it introduces a pixel shifting process for constructing fixated images

at any arbitrary fixation point. This process is done entirely in software without

moving the camera for tracking.

In the previous chapters, we gave the theory underlying the fixation method in

detail. This chapter presents a summary of the main steps involved in the fixation

method.

6.1 Main Modules

Figure 6-1 shows a block diagram of the ideas behind our fixation based motion

vision system. Referring to this figure, the fixation method can be implemented in

the following steps:

9 .S'tp 1: Finding the fixation velocity components ( 0 ., r0 ) and the component of

55:
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Figure 6-1: The modules of the fixation based general motion vision system.

rotational velocity along R,,, wR, by applying the system of eqn. 4.4 to the brightness

gradients from two initial images.

* Step 2: Knowing the fixation velocity components (us, v,) the 2nd fixated imag-

is constructed by the pixel shifting process explained in chapter 5. This is done entirely

in software without any need to move the camera for tracking. This step also results

in the estimation of the equivalent rotational velocity f p.

fr Step 3: Knowing wR1, and using the fixation constraint equation 3.15, the 1st

initial image, and the 2nd fixated image, the method presented in chapter :3 can be

used for recovering the translational velocity t, the partial rotational velocity W. and

the depth Z at all image points.

SStep 4: The total rotational velocity wtot is obtained simply by adding the (quil, a-

lent rotational velocity Qt, from equations 5.1 and 5.2, to the partial rotational vrlocity

w from eqn. 3.15.

In the following chapters, we apply our fixation based motion vision system to

the real world environment to recover motion and shape in the general case. At

every step, we discuss the implementation issues and introduce practical techniques

for dealing with them.



Spatial and Temporal Brightness
Gradients

Chapter 7

Brightness gradients are the primary source of information for direct method al-

gorithms. Appendix B describes the formulations for obtaining spatial brightness

gradients E., and E3 , and the temporal brightness gradient Et from a sequence of two

time varying images.

This chapter applies those formulations to two real image sequences to obtain the

corresponding brightness gradients. Then, we will introduce a technique for the visual

representation of the brightness gradients and finally, we will study those representa-

tions to explain the significance and characteristics of brightness gradients.

7.1 Visual Representation

Two successive frames of the landscape image sequence (taken at the Imaging Labo-

ratory of Carnegie Mellon University) are shown in fig. 7-1. These are 8 - bit images

but the last two digits are usually too noisy to be reliable.

The true motion between these frames is a combination of translation and rotation.

The real rotation is 0.3 deg about the optical axis Z and the reaf translation is 2 mm

along the horizontal axis X.

Using the formulation in appendix B, we can compute the brightness gradients.

The corresponding spatial and temporal brightness gradients for the landscape image

sequence are shown in figures 7-2 and 7-3, respectively.

57
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Figure 7-4 shows another image sequence (cup image sequence) used in the experi-

ments. The motion between these successive frames is a 3D translation of (2.5. 0. 4) mmn.

The spatial and temporal gradients for the cup image sequence are shown in figures 7-5

and 7-6, respectively.

In these maps, larger gradient values are shown brighter. Such gradient maps

suggest a way of visually representing the brightness gradients which renders them

more intuitively meaningful.

7.2 Interpretation and Significance

The top gradient maps in figures 7-2, and 7-5 show that horizontal gradients (E,'s)

capture the vertical lines and feature in the images. Similarly. the bottom gradient

maps in these figures demonstrate that vertical gradients (E.'s) pick up the horizontal

lines and feature in the image.

These experimental results show that the spatial gradients capture the geometric

and shading characteristics of the images. It is important to notice that the compu-

tation behind spatial gradients is very simple. However, they indirectly capture the

edges, features, and boundaries of the scene.

The temporal brightness gradient in fig. 7-3 tells us about the motion between

two landscape images. First of all, the vertical lines and features are seen all over this

temporal gradient map. This observation indicates that the motion has a horizontal

translation component.

Secondly, there are also horizontal lines in this gradient map but they become

weaker as they get close to the left side of the map (this argument becomes more

obvious if one compares the horizontal lines in here with those of E. in fig. 7-2). This

means that motion has a rotational component which is centered in the left side of

the image. In section 13.2. we will show that this is really the case.

Also. we can observe that at any vertical stripe of the spatial gradient map.
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the horizontal lines become stronger as their distance from the center of the stripe

increases. This observation indicates that the rotation center is located in the middle

of the image.

Figure 7-6 shows that the temporal brightness gradient map captures the vertical

edges and features in the cup image sequence. The uniform strength of the vertical

lines in fig. 7-6 is an indication of the fact that the motion in the cup image sequence

is a pure horizontal translation.

7.3 Summary

The gradient maps and discussions presented in this chapter show that the spatial

gradients capture the geometric and shading characteristics of the images and the

temporal gradients contain important information about the motion.

As shown in appendix B, the computational procedure behind gradient estimation

is very simple. In fact, it only involves the subtraction of neighboring pixel values.

Such a simple computation indirectly results in capturing the motion and detecting

the features, edges, and boundaries in the images.

However, we should emphasize that we neither intended to obtain such edges and

features nor did we use such representation of the gradient maps in our algorithms.

The intention was to demonstrate that the brightness gradient maps not only contain

the motion information (which is usually represented by the optical flow maps) but

also have a flavor of features and edges (used in edge maps and feature correspondence

algorithms).
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Figure 7-1: The first and second frames in the landscape image sequence. The true
motion is a 0.3 deg rotation about the nominal optical axis Z. and a 2 win translat i0n
along the horizontal axis X.
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Figure 7-2: The visual representation of the spatial brightness gradients for the land-
scape image sequence in the horizontal direction (top) and vertical direction (bottom).
E, and Ey. The horizontal gradient map (top) has captured the vertical edges and
features in the image. Similarly, the vertical gradient map (bottom) has picked up
the horizontal edges and features.
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Figure 7-3: The visual representation of the temporal brightness gradient for the
landscape image sequence, Ej. The vertical edges with relatively uniform strength
suggest that motion has a horizontal translation component. The horizontal edges
with decreasing strength towards left indicate that there is also a rotation centered
at the left of the image center.
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Figure 7-4: The first and second images in the cup image sequence. The true motion
between these frames is a 3D translation of (2.5, 0, 4) mmn.
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Figure 7-5: The visual representation of the spatial brightness gradients for the cup
images in the horizontal direction (top) and vertical direction (bottom), E, and E•.
The horizontal gradient map (top) has captured the vertical edges and features in the
image. Similarly, the vertical gradient map (bottom) has picked up the horizontal
edges and features.
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Figure 7-6: The visual representation of the temporal brightness gradient for the cup

image sequence, Et. The presence of relatively uniform vertical edges and features

here indicates that the motion is predominantly a horizontal translation
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The Effect of Fixation Patch Size
Chapter 8

Finding the fixation velocity (velocity at the fixation point), and the component

of rotational velocity about the fixation axis, WRo, is the most important part of

our fixation based method for recovering the shape and motion from an arbitrary

sequence of input images. This is because in our method a pixel shifting process

uses the fixation velocity to construct a sequence of fixated images from an arbitrary

sequences of input images (chapter 5). We also need wRo for computing the total

rotational velocity (chapter 3).

In chapter 4 we introduced the algorithms for recovering the fixation velocity and

WRo using the information from the fixation patch (an image patch around the fixation

point). In this chapter, we study the effect of the fixation patch size on the estimation

of the desired motion parameters using two different sequence of images where the

motion is a combination of translation and rotation.

8.1 Images with Moderate Relative Depth Changes

Here, we have used a sequence of real images acquired at the Imaging Laboratory of

Carnegie Mellon University. Figure 7-1 shows two of these 576 x 384 pixels images.

The relative depth is moderate (1250 mmn to 1625 mm, about 30% change) in the

image portion used ii. our computations. The camera has a nominal focal length of

24 mm, and a pixel size of 0.02 x 0.02 mi. The calibrated principal point has been

used as a fixation point. The calibration technique is explained in section 1:3.1.

67
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In a raster format system (origin at the top left corner of the image), the calibrate(d

principal point is located near the center of image, pixel (275, 205). The frontal depth

of this point is about 1450 mm.

Tile real motion between these two images has both translational and rotational

components. The real rotation is -0.3 deg about tile optical axis Z and the real

translation is -2 mm along the horizontal axis X. Testing our algorithms ulsing

such real images is valuable because the observed motion is relatively large (more

than subpixel motion in the image plane). For very large motions it is enough to

use higher frame grabbing rates. These days, there are commercially available frame

grabbers which are capable of capturing tip to 7,500 frame per second at 12 bits gray

scale resolution on personal computers [82].

Using the algorithm described in chapter 4 we can find the horizontal and vertical

translations and the rotational component wRo for any given fixation patch size. The

corresponding plots are shown in figures 8-1, 8-2 and 8-3. It is evident that these

estimations strongly depend on the fixation patch size especially when the fixation

patch is small. Figure 8-1 shows that the horizontal translation converges to its real

value (-2 mrn). On the other hand, the vertical translation (fig. 8-2) converges to

0.9 mm which is not its true value. The reason for this disparity is described in

section 13.2.

Figure 8-3 shows that for small patch sizes (less than :30 x 30 pixels in this case) the

estimated value for wR, oscillates wildly and results in unacceptable values. As the

patch size increases, the estimated wRo converges towards the real value of rotation.

For large patch sizes (around 100 x 100 pixels in this case) the estimated rotation,

-0.309 deg, becomes roughly the same as the real rotation, -0.3 deg.
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Figure 8-1: The estimated value for the horizontal translation versus the fixation
patch size for the landscape image sequence. The true horizontal translation is
-2 mm.

8.2 Images with Significant Relative Depth Changes

In this section we will study another image sequence (cup images) which have consid-

erable relative depth changes within the fixation patch (584 mm to 914 mm, about

60% difference). Figure 7-4 shows two of these 227 x 280 pixels images (cup images).

The real motion of the viewer is a horizontal translation of 2.5 mm to the right.

The camera has a nominal focal length of 18.66 mm, pixel-width of 0.032 "1m, and

pixel-height of 0.029 mm. We have used the nominal principal point (image center)

as our fixation point.

Figure 8-4, shows the estimates for the horizontal translation, vertical translation,

and the rotational velocity component wRo. It is obvious that the estimated vaiues

depend strongly on the size of the fixation patch. We can find good estimates for

these motion parameters if we use the right fixation patch size.
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Figure 8-2: The estimated value for the vertical translation versus the fixation patch
size for the landscape image sequence. The true vertical translation is zero which is
apparently different from the experimental results (about Z -0.9 mm). In chapter 13,
we will show that this considerable difference is due to a calibration problem.

8.3 Finding a Good Estimate for WRo Autonomously

It can be seen that the size of fixation patch has a critical effect on the estimated

values of the component of rotational velocity about the fixation axis, •"R.. A small

patch size results in a value for wR. which is usually far distant from the true value.

This is possibly because in a small patch, small translations can be interpreted as

large rotations. Figure 8-5 shows a hypothetical situation where (a) and (b) are a

sequence of a small 3 x 3 pixels patch. The real motion in this case is most likely

a pixel high vertical translation. But if we try to interpret it as a rotation about

the patch center we will end up with a 45 deg rotation which is not acceptable,

considering the assumed small motion between images.

As a conclusion, we can autonomously find a good estimate for the rotational

velocity component wR. simply by using a relatively large fixation patch size.



8.4: U~pdating the Fixation Velocity Us1ing9 -'R 71

8-

02309 deg

TrpRo,,t,(0Jdig)

0 20 40 me too 120 ?40
Patch sin j,,°.I.

Figure 8-3: The estimated value of the component of rotation velocity about the
fixation axis, wL., versus the fixation patch size for the landscape image sequence. For
large patch sizes, the estimated value Of WR. (about -0.309 deg) converges towards
the real value Of wR., -0.3 deg.

8.4 Updating the Fixation Velocity Using WR.

In the previous section, we saw that a good estimate for wii. can be found using a

relatively large patch but the corresponding fixation velocity estimate from such a

large patch is usually not reliable. This observation suggests that we may be able to

obtain better estimates for the fixation velocity components if we use the estimated

value of wft, and recompute the fixation velocity.

Using only the estimate for WJR. from a large patch, we can compute the total

motion field at any point (x,y) on a small patch around the fixation point (fixation
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Figure 8-4: The estimated values for the horizontal and vertical translations and the
rotational component wRo versus the fixation patch size for the cup image sequence.
The true motion is a horizontal translation of 2.5 mm.

patch). As we showed in chapter 4

SXt = Uo + U.R• (_yo-Y)
["+X + t (8.1)

Yt = O- U ( .

where (x., yo) is the position of fixation point (located in the image plane), and

(Uo, Vo) is the fixation velocity that we are about to estimate. After substituting xt

and yt into the BCCE, eqn. (2.7), we will have

+ U) WR. (X .r 0 )) El+Et=0. (8.2)uo+ 0 Y0 + IVX 1+Y0

However, due to noise, the above equation does not necessarily hold for any pixel. As

a result, we can find uo and v. by minimizing the sum of the errors over the whole
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Figure 8-5: Using small fixation patch can result in wrong interpretation of large
rotation. In a patch of 3 x 3 pixels, a pixel high vertical translation can be interpreted
as 45 deg rotation which is not an acceptable answer at all, considering the finite
motion between images.

fixation patch, namely by minimizing

fir(UO+ _O+, +(Yo))Ex+ (Ro (x-- x') E± + Et dx dywit.- + (y-I +o : Vo Cx• +Y-02 +1

(8.3)

with respect to u. and v.. This will result in the following system of linear equations,

Sff, EEdx dy ffE, Eydx dy (o
ffE.ýEydxdy ffPE~dxdy v0 )( ff -R ((x - xo)E -(y - y.)E.) - Et) Edx dy (8.4)

ff, (JR ((X - Xo)Ei - (y - y.)E.) - Et) EYdx dy

that can be solved for the two unknowns u,, and vo. Note that wR, has been already

computed and is a known value in this equation.
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8.4.1 Improved estimations

Here, we use the updated algorithms (which take advantage of a good ,cRo estimation)

to find estimations for the translational components of the fixation velocity.

Figures 8-6 and 8-7 compare the updated and previous estimations of the horizOn1-

tal and vertical translations in the landscape images. These figures show that there

are some improvements in the updated estimations especially for the vertical transla-

tion (fig. 8-7). The improvements in the updated estimations are more pronounced

0
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Figure 8-6: The updated and previous estimations of the horizontal translation, along
the X-axis, versus the fixation patch size for the landscape image sequence.

in the plots corresponding to the cup images (figures 8-8 and 8-9). Note that we have

better improvements where there is the most need for it, namely in the cup images

where relative depth variations is large compared to the landscape images.

Despite improvements, the dependency of the updated translational components

on the fixation patch size is still quite clear in these figures. However, we can find good

estimates for these motion parameters if we choose the right fixation patch size. In
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Figure 8-7: The updated and previous estimations of the vertical translation, along
the Y-axis, versus the fixation patch size for the landscape image sequence.

practice, we do not know the real fixation velocity, and therefore we cannot select an

appropriate fixation patch size by checking the computed values of the translational

components. The next chapter introduces a technique for autonomous choice of an

optimum fixation patch size.
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Figure 8-9: The updated and previous estimations of the herticnal translation, along

the X-axis, versus the fixation patch size for the cup image sequence.



Autonomous Choice of an
Optimum Fixation Patch Size

Chapter 9

The experimental results and explanations in the previous chapter suggest that

relatively large patch sizes should be used in order to get a good estimate for the

component of the rotation along the fixation axis, wRo. On the other hand, we know

that in general using a very large patch size will result in a wrong estimate for the

fixation velocity because depth variations usually increase as the patch size increases.

Figures 8-1 and 8-4 showed that for any image sequence, there is an optimum

patch size which results in good estimates for the fixation velocity components. The

corresponding optimum patch size is about 100 x 100 pixels for the landscape image

sequence (fig. 8-1) and about 50 x 50 pixels for the cup image sequence (fig. 8-4).

In this chapter, we will describe an autonomous technique for finding the optimum

fixation patch size which results in good estimates for the fixation velocity components

for any image sequence.

9.1 Normalized Error

We showed that for any given size of the fixation patch, we can find the fixation veloc-

ity components, u, and v,. Also the component of the rotational velocity about the

fixation axis, wR,, can be estimated reliably using a relatively large patch. Knowing

these values, the motion field velocity (xt, yj) at any point (x, y) in the image plane is

given by eqn. 8.1. Ideally, for any given image point (x,y) the BCCE, eqn. 2.7, must

77
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be satisfied. However. in practice we are dealing with real images which are noisy andt

as a result, the term xtE, + ytEy + Et does not usually become zero. This term can

be considered as an error term for the corresponding pixel. In a patch of size p x p

pixels, we can add these error terms to define the normalized error. e. as

E[xtE,. + ytEv + E]2

p2= (9.1)
p 2

This definition allows us to compare the performance of different patch sizes by study-

ing the behavior of the normalized error e with respect to the changes in the patch

size p.

9.2 Optimum Patch Size

In this section, we show how the normalized error can be used for finding an optimum

patch size which results in good estimates for the components of the fixation velocity.

Any patch of a real image may include a substantial depth range. In general, there are

two main groups of images. In the first group, there are moderate changes in depth

variation as the patch size increases. The second group represents images where the

depth variation increases significantly as the patch size increases.

9.2.1 Moderate changes in relative depth

Figure 9-1 shows the normalized error versus the fixation patch size for the landscape

image sequence. Although this plot corresponds to a specific image and motion, it

shows one of the two typical representations of the normalized error behavior as the

patch size increases. As shown in this figure, the normalized error first increases with

the patch size, reaches a peak and then dips down.

This is because initially for the smallest patch size (3 x 3 pixels) the algorithm

finds the motion estimates that makes the BCCE error term (xEr + ytEj + Ej) as
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Figure 9-1: The estimated value of the normalized error e versus the fixation patch size
for the landscape image sequence. The optimum patch size occurs around 100 pixels.

small as possible. The algorithm does a good job in minimizing the total of 9 error

terms in this small patch but the motion estimates are usually very bad at this level

because basically there are not enough data available to the algorithm.

In the next level, we have a patch of 5 x 5 pixels size which provides more data.

While there is still not enough data for the algorithm to come up with good motion

estimates, it finds parameters which minimize the sum of the BCCE error terms.

However, the algorithm is not usually as successful as it was for the 3 x 3 pixels patch

size because it has to deal with more error terms and this results in higher normalized

error.

As we increase the patch size, the struggle between providing more data to the

algorithm and satisfying more error terms continues. For relatively small patch sizes,

this results in higher normalized error. The normalized error increases until it reaches

a peak where the role of extra input data becomes more important than satisfying

more error terms. Then by increasing the patch size, we are providing more data
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to the algorithm and this gives a better motion estimate and results in a smaller

normalized error.

After dipping down, the normalized error stays roughly the same in this case.

because the relative depth variation does not change much with the patch size, (fig. 9-

1). The optimum patch size in this example occurs around 100 x 100 pixels which

corresponds to the start of the small slope in normalized error, a roughly flat portion

after the first peak. In this example, relative depth changes are moderate (1250 min

to 1625 mam, about :30% difference) and stay roughly the same as the patch size

increases.

9.2.2 Significant changes in relative depth

The normalized error for the cup image sequence is shown in fig. 9-2. As before, the
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Figure 9-2: The normalized error versus fixation patch size for the cup image sequence.
The optimum patch size occurs around 50 pixels.

normalized error first increases and after reaching a peak it dips down and then grows

with the patch size again. This is because in the beginning, insufficient information
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results in extremely wrong estimates and this causes the normalized error to increase

with the patch size. As we are providing more and more data to the algorithm, we

obtain better estimates for the motion components and this decreases the normalized

error. If we increase the patch size beyond an optimum size, which occurs at about

50 pixels in this example, the normalized error starts increasing again. In this 50 x 50

pixels patch, we have a considerable amount of relative depth changes (from 584 nirn

to 914 mm, about 57% increase). Such significant relative depth variation leads

to larger errors in the fixation velocity estimates which in turn results in a larger

normalized error as p grows.

9.3 Autonomous Choice of Optimum Patch Size

As one might expect, the optimum fixation patch size depends on the patch topology

and texture which may vary from image to image. However, the general pattern of

the normalized error allows us to autonomously find an optimum fixation patch size

which gives good estimates for the fixation velocity components.

In the case where considerable changes in the relative depth occur with patch size

increase, as in the cup image sequence, the optimum fixation patch size corresponds

to the minimum normalized error that occurs after the peak value of the normalized

error. And in cases where the relative depth does not change significantly with patch

size, as in the landscape image sequence, the optimum fixation patch size is where

the normalized error does not change considerably as the patch size increases.

A human operator may not have much problem identifying the optimum patch

size on the normalized error plots. But our aim is to come up with a simple algorithm

which allows a machine to autonomously find the optimum patch size from any given

normalized error data set.
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9.3.1 Algorithm

This section describes the algorithm for obtaining the optimum fixation patch size

from any normalized error data set. The general algorithm is composed of the fol-

lowing steps:

e Step 1: Setting the patch size bounds

All the experimental results unanimously show that the motion estimates from a

small patch are not reliable at all. As a result, we can put a lower bound on the patch

size. By taking into account the camera parameters and the image size, we have used

a 15 x 15 pixel patch as the lower bound of the patch size. Moreover, the square

shape of the patch, the location of the fixation point, and the image size dictates an

upper bound on the patch size. As a result, we have used 140 x 140 pixel.s as the

upper bound in our experiments.

* Step 2: Computing the normalized error slope

Denoting the normalized error at patch i as eli], we define the slope at patch i as

Sid = e[i + 1]- e[i]
e[i] (9.2)

The slope S[il is dimensionless and shows the relative change of the normalized error

as the patch i changes to patch i + 1.

* Step 3: Setting a slope index

By searching through the slope space, we can find the steepest (most negative)

slope and denote it as Smax. This definition allows the algorithm to get a sense of

steepness (or flatness) at any point on the normalized error curve. We define the slope

index Sind as a small percentage (about 15%) of the steepest slope Smax. Study

of many normalized errors plots has shown that this choice of the Sind allows us to

identify relatively flat portions in a typical normalized error curve.

* Step 4: Searching for the optimum patch size

We choose the lower bound patch size as the first candidate for the optimum size.
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Then. we move to the next patch size and select it as the new nominated optimum1

patch size if it satisfies the following two conditions:

- First condition: Its normalized error e[i] should be less than the normalized error

value of the previously nominated optimum point.

- Second condition: Its corresponding slope S[i] should be steeper (more negative)

than the slope index, Sind.

We continue this search process until we reach the upper bound of the patch size.

9 Step 5: Locating the optimum patch size

After checking all the data, the point immediately after the last nominated point

is selected as the optimum point.

9.3.2 Experimental results

The above algorithm has been applied to the normalized error data set of the land-

scape and the cup image sequences (figures 9-1 and 9-2) to obtain the optimum patch

sizes. The corresponding experimental results of locating the optimum patch size are

shown in figures 9-3 and 9-4. In these figures, the nominated optimum points are

shown by small circles on the normalized error curves. It can be seen that for both

cases the algorithm finds the optimum points correctly.

Figure 9-3 shows that the optimum patch size for the landscape image sequence is

selected at 101 pixels which corresponds to a small field of view (about 2 x 2.4 deg).

If we go back to figures 8-6 and 8-7 again, we see that one of the best estimations

for the translational components occur at this optimum patch size (101 pixels). The

optimum patch size for the cup image sequence is selected at 47 pixels (fig. 9-2).

Similarly, figures 8-8 and 8-9 show that we obtain one of the best combined motion

estimates at this optimum point (47 pixels). This optimum patch size for the cup im-

age sequence makes approximately the same field of view as the one for the landscape

image sequence (about 2 x 2.4 deg). This is an important observation considering

that we have obtained roughly the same optimum field of view for two totally different
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Figure 9-:3: Searching process of finding the optimum patch size for the landscapf
image sequence. The nominated points are shown by small circles. The last point
represents the optimum point which occurs at 101 pixels in this case.

images, cameras, and focal lengths.

9.3.3 Further results

In order to test our algorithm further, we have run it on many other image sequences

with smaller and larger motions. The algorithm has worked successfully in finding

the optimum patch sizes in all cases. Some of the corresponding experimental results

are shown in figures 9-5, 9-6, 9-7, and 9-8. These experimental results for the other

images sequences show that the corresponding optimum patch sizes are close but not

necessarily the same as the values we obtained before. However, in every case the

obtained optimum point represents the patch size which results in one of the best

motion estimates.
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Figure 9-4: Searching process of finding the optimum patch size for the cup image
sequence. The nominated points are shown by small circles. The last point represents
the optimum point which occurs at 47 pixels in this case.
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Figure 9-5: Searching process of finding the optimum patch size for the landscape2O-
30 image sequence. The motion is two times as large as before (-4 mnn translation
and -0.6 deg rotation). The nominated points are shown by small circles. The last
point represents the optimum point which occurs at 101 pixels in this case.
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Figure 9-6: Searching process of finding the optimum patch size for the cup 13 image
sequence. The motion is two times as large as before (-5 mm translation). The
nominated points are shown by small circles. The last point represents the optimum
point which occurs at 39 pixels in this case.
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Figure 9-7: Searching process of finding the optimum patch size for the landscapf 20-
25 image sequence. The motion is -2 mm translaticra and -0.3 deg rotation. The
nominated points are shown by small circles. The last point represents the optimum
point which occurs at 105 pixels in this case.
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Figure 9-8: Searching process of finding the optimum patch size for the cup23 image
sequence. The motion is -2.5 mm translation. The nominated points are shown by
small circles. The last point represents the optimum point which occurs at 49 pixels
in this case.
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Autonomous Choice of an
Appropriate Fixation Point

Chapter 10

In general, our fixation algorithms do not place any restrictions on the choice

of the fixation point location and virtually any point can be chosen as the fixation

point. Among all points, the choice of principal point (image center) makes the

formulations simpler. However, in practice, one should take some more considerations

into account while choosing an appropriate fixation point. Most significantly, the

motion of the chosen fixation point should be detectable using the information from

its corresponding patch. To clarify this, we can consider a patch which has a uniform

brightness. Choosing the center of such a patch as the fixation point will not be

useful, because the motion of such a point is irrecoverable using only the information

from that patch. This chapter introduces a technique for autonomous choice of an

appropriate fixation point.

10.1 Algorithm

Similar to chapter 4 (when using wR. = 0), the least squares method can be applied

to the BCCE terms to obtain the following system of linear equations for the uniform

motion field (u, v) on a patch as

[ff, Edxdy ffE.E, Edxdy ] (u" = ( -ffpEtErdxrdy ). (10.1)

[fIpE, E,,dx dy f E'dx dy J \) E, f~E, dx9dy

91
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It is obvious that the solution for (u. r) exists (i.e. motion is detectable) if the deter-

minant of the above matrix

D ( Edx dy) (JE dx dy) - (JjEdd) 2  (10.2)

is not zero. However, this is not a reliable criteria for real images because due to noise

we may have D •: 0 but it does not guarantee that the patch is an appropriate one.

If we denote the smaller eigenvalue of the coefficient matrix in eqn. 10.1 by A,,

A= (ffp(E, + E')dxdy- Vffp(E2 - EI)2dxdy +4(ffpE.Eydxdy)2) (10.3)

then we can define a good fixation point as a point whose corresponding patch has

the largest A,. Using such a patch not only guarantees a solution (D -: 0) but also

ensures that our solution (u, v) is not sensitive to noise errors in the coefficient matrix

of eqn. 10.1.

The reasoning behind using the largest A, is the form of the characteristic poly-

nomial of the coefficient matrix in 10.1,

F(A) = A2-2 (JI(E. + E,)dxdy) A+(11 Edxdy) (Jj Eydxdy)-(J E.,Edxdy)

(10.4)

When A is large, small errors in the coefficients results in negligible error in F(A)

compared to the case when A is small. This implies that in patches with larger

A8, the apparent motion components (u,v) are less sensitive to small errors in the

coefficients which may occur due to noise.

10.2 Discussion

It is easy to implement the A, criteria for autonomous choice of a good fixation point.

This criteria results in reliable choices for the fixation point even in real noisy images.
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For patches with relatively uniform brightness the A, is small which means that we

should avoid choosing the fixation point in such a patch. We will get larger and larger

A,'s as we choose patches with more features and brightness variations.

We have addressed the question of finding an appropriate fixation point (the center

of a fixation patch) among a number of given patches. But which patches should we

check in the first place? We can search the whole image for a globally optimum

location of a fixation point in the following steps:

@ Step 1: Divide the whole image into 4 quadrants and find the corresponding A,

for each quadrant.

* Step 2: Use the quadrant with the largest A, as a new base image.

* Step 3: Repeat steps I & 2 until reaching a quadrant with an acceptable size.

However, performing such a comprehensive search may not always be necessary.

Instead, we can check a limited number of neighboring patches (near the principal

point, for convenience) and choose the center of the one with the largest A, as the

fixation point.
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Tracking without Moving the
Camera

Chapter 11

The fixation method requires a sequence of fixated (tracked) images as its input.

However, in general the acquired image sequences may not be fixated at any point

and even if they are it is not easy to find that fixation point.

Our fixation method does not depend on how the fixated images are obtained.

But along the course of this thesis work, we were confronted with the challenge of

constructing a sequence of fixated (tracked) images from an arbitrary image sequence.

This chapter describes the experimental results and the implementation issues in-

volved in constructing sequences of fixated images from several real images sequences.

11.1 Background

The task of constructing a sequence of fixated images is, in essence, the well known

tracking problem. People have been working on different aspects of this problem using

various techniques for many years [43, 22, 53]. For example, Aloimonos &S Tsakiris

[5] propose a method for tracking a foveated target of known shape; Bandopadhay et

al. [10] use optical flow and feature correspondence for tracking the principal point

in order to find the motion in a special case (they assume that there is no rotation

along the optical axis) without considering noise; and Sandini & Tistarelli [52] use

an optical flow based tracking method for finding the depth in a special case (no

rotation along the optical axis). All these methods use optical flow and/or feature

95
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correspondence and address only special cases. There has also been some work on

using visual tracking for finding the trajectory of an object moving in an environment

[13. 90].

Traditionally, tracking has been associated with mechanically moving the camera

Lo keep the image of a particular point stationary at the image center. Sonie tech-

niques even rely on such a system. For example, Thompson [74] introduces an optical

flow method for recovering the motion in special case where the rotational velocity

along the optical axis is zero. His method requires a sequence of tracked images at the

principal point but he acknowledges that the actual implementation of such tracking

requirement in engineering systems is not possible yet.

Hardware tracking is done by physically moving the camera with respect to the

environment. Considering that in general the point of interest has a motion relative

to the observer, the 2nd fixated image cannot be obtained in one step. As a result.

feedback control loop is required for the camera rotation system to compensate for

the errors resulting from the new position of the fixation point [46, 20, 24. :37. M9.

19]. These difficulties and other problems such as expense, real time response. and

potential errors involved make mechanical tracking unattractive especially for our

vision system.

11.2 Pixel Shifting Process

Here, we use the pixel shifting process described in chapter 5 for constructing a se-

quence of fixed images from an arbitrary image sequence. This method solves the

tracking problem in its most challenging case. In other words, it does not require

any knowledge about the motion or shape. Furthermore, the fixation point is not

restricted to the principal point (image center) and virtually any point can be chosen

as the fixation point. The pixel shifting process is done purely in software without any

need to mechanically move the camera for tracking. It is computationally simple and
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uses neither optical flow nor feature correspondence. Instead, brightness gradients of

the initial input images are used directly.

11.2.1 Bilinear Interpolation

We showed that constructing a fixated image is the same as finding the brightness E

for any pixel (x, y) of such an image, (see chapter 5). We proved that the brightness

E at pixel (x, y) of the 2nd fixated image is the same as the brightness at the pixel

(x - Tu, y - Tv) of the 2nd initial image where the shifting vector (u, v) is given by

eqn. 5.4 and T is the time interval between two initial images.

In practice, the point (x - Tu, y - Tv) does not exactly coincide with any pixel.

Instead it is usually surrounded by four pixels whose brightnesses may be denoted by

Elj, Ei,j+1 , Ei+1,j, and Ei+1 ,j +1 , fig. 11-1. In this figure, p and q are the horizontal

E ij E i~j+i

÷ ~q

-----------------*-------------------

EI+Ij E i+,,j+l

Figure 11-1: The mapped point in the 2nd initial image does not usually coincide
with any single pixel. Instead it is usually surrounded by four pixels.
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and vertical distances of the mapped point from pixel (i,j). Considering that this

can happen for any pixel, the average !(E,,, + Ej,+1 + Ei+ld.j + Ei+ j+,) is not a good

estimation for E because it corrupts the constructed image by introducing aliasing.

Bilinear interpolation of the surrounding brightness levels has proven to be a very

good estimate for E which is given as,

E= (1 -p)(1 -q)Eij +p(1 -q)Ei, j +± +q(1 -p)Ei+,.j +pqE,+1 . 1 . (11.1)

As shown in fig. 11-1, p and q represent the horizontal and vertical distance of the

mapped point from pixel (i,j). Such an algorithm gives the largest weight to the

pixel closest to the mapped point and results in the exact brightness value when it

coincides with any pixel, p = q = 0.

All the constructed images in this work are obtained using bilinear interpolation.

Our experimental results have shown that such interpolation is quite satisfactory.

There are some other techniques such as bicubic interpolation [1, 13, 32, 49, 50] which

are much more expensive, however we did not find that we needed to use them in this

work.

11.3 Construction of Fixated Images

The landscape and cup image sequences in figures 7-1 and 7-4 are used as input

(initial) images in the following experiments. As we discussed earlier, the 1st initial

images (top images) in those figures are directly used as the 1st fixated images. Then

the pixel shifting process and the bilinear interpolation are applied to the 2nd initial

images (bottom images in figures 7-1 and 7-4) to construct the 2nd fixated images,

figures 11-2 and 11-3. These constructed images are quite good and look as natural

and crisp as the original images do. We will describe the quality of these images

further in the following sections.

Depending on the size and direction of the equivalent rotational velocity fl (see
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Figure 11-2: The constructed, 2nd fixated, image for the landscape image sequence.

chapter 5), the brightness E at some border pixels are not computable because they

are mapped to points outside the initial images domain. The brightness at such

bordering pixels are given an arbitrary value of 0 which causes the appearance of

bold black lines at the border of constructed images. This should not concern us

because in general the results near the image borders are not considered reliable

anyway.

11.4 Spatial and Temporal Gradient Maps

The gradient maps are good measures for studying the quality and characteristics of

fixated image sequences. This section examines the gradient maps of two different

fixated image sequences that we have constructed from real image sequences.



100 Chaptcr 11: Tracking without Mot,ing th/ ('amf ra

Figure 11-3: The constructed, 2nd fixated image, for the cup image sequence.

11.4.1 Landscape fixated image sequence

The combination of the 1st initial image (top image in fig. 7-1) and the 2nd fixated

image in fig. 11-2 form the landscape fixated image sequence. The corresponding spa-

tial gradient maps in fig. 11-4 show that these gradients contain valuable information.

The vertical and horizontal features of the initial images are indirectly represented in

the spatial gradients.

The temporal gradient map of the landscape fixated image sequence is shown ill

fig. 11-5. This map contains very important information. First of all it clearly shows

the characteristic of a fixated image sequence. It is clear that both the horizontal

and vertical features of the image sequence become more obvious as their distance

from the fixation point location (image center in this case) increases. Secondly, the

appearance of the horizontal and vertical lines here provides hints about the existence

of a rotational component about the fixation axis. And finally the dominant vertical

lines are an indication that the equivalent rotational velocity has a major component
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about the vertical axis.

11.4.2 Cup fixated image sequence

The fixated cup image sequence consists of the top image in fig. 7-4 (as the 1st

fixated image) and the 2nd fixated image in fig. 11-3. Figure 11-6 shows the spatial

gradient maps for this image sequence. The horizontal gradient map (top) identifies

the vertical edge-like features and the vertical gradient map (bottom) detects the

horizontal edge-like features in the image. We should emphasize here that we neither

intended to find edges nor have we used those. However, it is important to observe

that spatial gradients (simple horizontal and vertical differences) of fixated images

indirectly capture important features of the images.

Figure 11-7 represents the temporal gradient map of the fixated cup image se-

quence. This map is dominated by vertical lines which indicate that the rotational

component about the fixation axis is negligible and the equivalent rotational veloc-

ity has only a component about the vertical axis. Furthermore these vertical lines

become more evident as their distance from the image center increase which is an

indication that the fixation point is located near the image center.

11.5 Summary

The experimental results in this chapter show that the pixel shifting process can be

easily used for constructing a sequence of images fixated at any arbitrary point. This

software based technique is computationally simple and does not require moving the

camera for tracking the desired fixation point.

The novel representation of the spatio-temporal gradients by their corresponding

maps showed that gradients not only preserve the image features but also capture the

motion in a unique way which reflects the characteristics of fixated image sequences.
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Figure 11-4: The spatial gradient maps of the fixated landscape image sequence in
x direction (top) and y direction (bottom).
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Figure 11-5: The temporal gradient map of the fixated landscape image sequence.
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Figure 11-6: The spatial gradient maps of the fixated cup image sequence in

x direction (top) and y direction (bottom)
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Figure 11-7: The temporal gradient map for the fixated cup image sequence.
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Depth Map Recovery

Chapter 12

This chapter describes how depth maps are recovered from real image sequences.

It also describes implementation issues and the techniques used in the recovery of

depth maps.

12.1 Introduction

Earlier in chapter 3, we proved that ideally the depth at any point of a fixated image

is given by eqn. 3.35,

Z (s.t) (12.1)
E- - .oV .

where Ro is the unit vector along the fixation axis and s and v are the known vector

functions of pixel position (x,y) and spatial gradients (E., Ey) as given in equations

2.9 and 2.10.

The translational velocity t is obtained by finding the eigenvector corresponding

to the smallest eigenvalue of matrix M in eqn. 3.31. The optimal patch size found in

chapter 9 is used for the estimation of t.

All the computations in this chapter are performed using the data from the fixated

image sequences that we constructed in chapter 11.
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12.2 Detecting the Depth Flaws

It is well known that depth recovery from real images is not perfect because of noise

and other characteristics of real images. This section describes the techniques for

detecting pixels where depths are not acceptable.

Using the notations Num and Denom as,

Num =(s. t)(s. t) (12.2)

and Den~m= (v × R°) . t)
Denom = XR -E-wRoV.II, (s - t). (12.3)

equation 12.1 can be written as,

_ Num
Z - Denorn (12.4)

Using this equation, we can compute depth Z at any single pixel in the image. How-

ever, the recovered depth is not always reliable. We call a depth Z unacceptable if it

satisfies any of the following cases.

o Case I: Denom is negative.

This condition results in a negative depth which should not happen in our vision

system. This usually happens where the data is noisy.

e Case 2: Denom is zero.

This case results in an irrecoverable depth (Z = 2) or wrong depth (Z = cr).

It may occur due to many reasons such as zero translational velocity, in case the

pixel is in a patch with uniform brightness (zero gradients), or when the apparent

motion is in a direction perpendicular to the spatial gradients.

Figure 12-1 shows the depth flaw map for the fixated cup image sequence obtained

by using the above criteria for detecting the points with unacceptable depth. Any

black point in this map represents a pixel whose computed depth is not acceptable.
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It is quite obvious froin this figure that if we compute the depth using only the data

L. LA Ii"•

I "° j, " --

I 11' d.L : ." ;

Figure 12-1: The flaws in the depth map for the fixated cup image sequence. The

pixels with unacceptable depth are shown in black.

from a single pixel, then we will end up with considerable number of pixels where

depths are not acceptable.

12.3 Constructing a Primary Depth Map

Figure 12-2 shows the depth map where each depth value is computed using only the

data from its corresponding pixel. Using such a method leave us with many pixels of

unacceptable depths which are left blank (white) in this depth map.

This is a primary depth map and obviously is not very informative because depth

information is missing in many areas. In the next section the first effort is made for

estimating the depth at such points.
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Figure 12-2: The initial depth map for the fixated cup image sequence. The areas
close to the viewer are bright and the pixels whose depths are not acceptable are left
blank (white).

12.3.1 Filling in the Missing Depths

At any pixel where the depth information is missing (depth is unacceptable), we can

find a depth estimate by averaging the reliable depths at its surrounding pixels. The

notation rf is used for the radius of such a patch. This radius is defined in a way

that forms a square patch whose side has a length of (2 x rf + 1) pixels. Figure 12-3

shows the corresponding completed depth map. A maximum patch size of radius

rf = 6 pixels has been used for finding an estimate for the points where depths were

not known in the initial depth map, fig. 12-2. Although this primary depth map is not

perfect, it delivers very useful clues about the boundary of objects in the environment

(books, cup, and spoon).
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.......

Figure 12-3: The completed depth map for the fixated cup image sequence with
ri = 6 pixels. The areas close to the viewer look brighter.

12.4 Improving the Depth Map

We can considerably improve the depth map by using the data from a surrounding

patch for computing the depth at any pixel point. We denote the radius of such patch

with rp. Similar to rf, the radius r. is defined in a way to form a square patch whose

side has a length of (2 x rp + 1) pixels.

Applying such a simple technique decreases the number of depth flaws and in-

creases the quality -of depth map considerably. Figure 12-4 shows the results when a

patch of 1 pixel in radius is used for depth computation at any pixel (rp = 1 pixel).

Although the depth flaws (in the top of the fig. 12-4) have not disappeared, they have

shrunk noticeably when compared to the previous case.

The initial depth map is shown in the middle of fig. 12-4 where the pixels with

unreliable depth estimates are left blank (white). The completed depth map is given

at the bottom of fig. 12-4 where a patch of maximum 9 pixels in radius (rf = 9 pixels)

is used for finding depth estimates at points where depths were not known in the initial
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depth map. The shape of the objects in the image have started to become identifiable

in this completed depth map.

12.5 Even Better Depth Maps

The depth maps can be further improved by using larger patches for depth estimation

at any single pixel. Figures 12-5 through 12-7 show the depth flaw, initial depth, and

completed depth maps for cases with patch sizes of radius rp = 2, 3, & 4 pixels. The

maximum radial patch size for completing the depth map have been rf = 11, 15,,

and 17 pixels respectively. These maps show that the environment objects (books,

spoon, cup, and even the background poster) become more identifiable and smoother.

The experimental results show that if a relatively large initial patch size rp is used

then depth map may loose some of its fine details.

12.6 Subsampling the Fixated Images

In this section, we have subsampled each of the fixated images by a factor of 2 before

using them for depth recovery. This is done by substituting a patch of 2 x 2 neighboring

pixels with a new pixel whose brightness is an average of 4 initial pixels. This is the

smallest symmetric subsampling which can be done on an image. We expect to gain

a better depth map because subsampling usually leads to a decrease in noise.

The depth flaw (top), initial depth (middle), and complete depth (bottom) maps

for the subsampled image sequence with rp = 0 are shown in fig. 12-8. These maps

indicate that some improvements are made by subsampling. This becomes clear if

we notice that in the depth flaw map (top of fig. 12-8) there are less regions with

unacceptable depths than in the corresponding depth map obtained from images

which were not subsampled (fig. 12-1). The initial depth map (middle) is not very

informative here. As before, the pixels with unacceptable depths are left blank (white)

in the initial depth map. A patch of maximum 4 pixels in radius (r! = 4 pixels) is
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used for completing the initial depth map. Even this completed depth map (bottom

of fig. 12-8) offers only a very vague intuition about the boundaries of the objects in

the image.

In the next step, we have used a patch of 1 pixel in radius (r. = 1) for the depth

estimation at any single pixel. The results are shown in fig. 12-9. As expected, the

depth flaws have not fully disappeared (top). These points are left blank (white) in

the initial depth map (middle). For obtaining the complete depth map (bottom), a

patch of maximum 6 pixels in radius (rf = 6) is used in this case. Considering the

subsampling size of 2 x 2 pixels, these results are located somewhere between the

results of nonsampled images with rp = 2, and rp = 3 (figures 12-5, and 12-6).

Figure 12-10 shows the results for the subsampled images for the case with rp=

2 pixels, and rf = 9 pixels.

A careful observation shows that there are not many differences between sampled

and nonsampled results from the point of view of identifying different objects in the

environment. However, the depth maps of subsampled images have much better

quality and are relatively free from the systematic noise. This is quite clear if we

notice that the vertical black lines between the books which were seen in previous

depth maps are absent here. These lines represent narrow but deep vertical gaps

between the books which did not actually exist in the environment.

Furthermore, due to the printer grey level limitation, quality depth maps cannot

be printed out. The computed depth maps are much better than what are shown here.

For example each book has its relatively uniform depth which clearly distinguishes it

from its neighboring books when there is a depth change in the real environment.

12.7 Summary

This chapter combined the individual results that we had obtained in previous chap-

ters and used them in the recovery of depth maps. The recovered depth maps are
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quite good considering that the input to the system was only two unrestricted frames.

These images were real and noisy. Furthermore, the motion was not known in ad-

vance, and the recovered motion was used in the computations. It is also important

to notice that simple computations have been involved in all the steps.

The experimental results show that by subsampling the initial images, much better

depth maps are obtained. This is due to the fact that subsampling acts as a low pass

filter and eliminates the high frequency noise which is inherent in real images.

An overall study of the experimental results in this chapter shows that depth maps

obtained by using an rp = 2 or 3 pixels seem to be a good choice. This is probably

because of the fact that a mask of 2 x 2 pixels is used for the computation of gradients.

As a result, using smaller rp will not give a good depth map. On the other hand,

using larger rp's may result in the elimination of some fine details of the depth map

and does not improve the overall quality of the depth map.

It should also be pointed out that we do not have any control over choosing rf.

The algorithm automatically chooses an rf large enough to include pixels with reliable

depths in order to find estimates for depths at pixels where depths were missing in

the initial depth map.

All the results in this chapter were constructed by using a single r! for obtaining

depth estimate at any pixel point with an unacceptable depth value. An adaptive

approach which chooses rp appropriately at any desired pixel point will result ill

smother depth maps.
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Figure 12-4: The depth flaw (top), initial depth (middle), and completed depth (bot-
tom) maps for the fixated cup image sequence with rp = I pixel, and rf = 9 pixels.
The areas close to the viewer look brighter.



116 Chapter 12: Depth Map Rccovery

,. .

d A S . d

°db

Figure 12-5: The depth flaw (top), initial depth (middle), and completed depth (bot-
tom) maps for the fixated cup image sequence with rp = 2 pixels, and rf = 11 pixels.
The areas close to the viewer are shown brighter.
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Figure 12-6: The depth flaw (top), initial depth (middle), and completed depth (bot-
tom) maps for the fixated cup image sequence with rp = 3 pixels, and r¢ = 15 pixels.
The areas close to the viewer look brighter.
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Figure 12-7: The depth flaw (top), initial depth (m~iddle), and completed depth (bot-
tom) maps for the fixated cup image sequence with r,, = 4 pixels, and rf = 17 pixels.
The areas close to the viewer look brighter.
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Figure 12-8: The depth flaw (top), initial depth (middle), and completed depth (bot-
tom) maps for the subsampled (by 2) fixated cup image sequence with rp = 0, and

rf= 4 pixels. The areas close to the viewer look brighter.
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Figure 12-9: The depth flaw (top), initial depth (middle), and completed depth (bot-
tom) maps for the subsampled (by 2) fixated cup image sequence with rp = 1, and

rf= 6 pixels. The areas close to the viewer look brighter.



12.7: Summary 121

' 
ir

:..........

Figure 12-10: The depth flaw (top), initial depth (middle), and completed depth
(bottom) maps for the subsampled (by 2) fixated cup image sequence with rp = 2,
and rf = 9 pixels. The areas close to the viewer look brighter.
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Calibration Issues
Chapter 13

Camera calibration is an important area of research involving the study of tech-

niques for obtaining reliable estimates for the required internal and external param-

eters of a camera in a vision system.

For many years, computer vision scientists have been working on different aspects

of camera calibration problems such as focal length \principal distance) [77, 86, 87),

principal point (image center) [33, 861, scale factor (difference between the scanning

frequency of the camera sensor plane and the scanning frequency of the image cap-

turing board frame buffer) [33, 47], intrinsic parameters (camera internal geomet-

ric and optical characteristics) [77], extrinsic parameters (the 3D position and ori-

entation of the camera coordinate relative to a certain world coordinate system)

[77, 85, 87, 18, 16, 86], and the hand-eye transform system (the 3D position and ori-

entation of a camera relative to the last joint of a robot manipulator in an eye-on-hand

configuration) [78, 79, 12].

In the previous chapters we saw that some parameters such as focal length and

principal point have important role in the formulations. Manufacturers usually give

a nominal value for the focal length but this nominal value is not always sufficiently

accurate to be used in the computations. Some other important parameters such as

the true principal point are not given at all.

In this chapter, some of the calibration techniques used in this work will be de-

scribed.

123



124 Chapter 13: Calibration Issues

13.1 Principal Point Calibration

The principal point is where the optical axis intersects the image plane; see fig. 2-1.

Ideally, the principal point is located at the center of the image plane. However, in

off-the-shelf cameras the principal point is not necessarily located at the center of the

image plane. Finding the true location of the principal point is important because

those values appear in our algorithms.

For the cup images the nominal image center was used as the principal point

because the camera was not accessible to be calibrated. On the other hand, in the

case of the landscape images the true principal point was obtained using a direct

optical method [33].

The experimental results showed that the true principal point was considerably

off from the nominal image center. It was located at about 13 pixels to the left and

13 pixels below the nominal image center.

13.1.1 Direct optical method

The direct optical method is a very simple and accurate calibration technique for

finding the principal point. This method requires only a laser. The lens assembly is

used as a reflecting surface and therefore, the lens can remain mounted on the camera.

When a laser beam is pointed at a lens assembly, part of the light is reflected

when the beam enters the glass and also when it leaves it. Multiple reflections occur

when the beam is reflected within the lens and can be observed on a piece of paper

attached to the front of the laser with a small hole for the primary beam. With some

experimental skill the laser can be adjusted relative to the lens so that all reflections

coincide with the primary beam, indicating that it is aligned with the optical axis.

Once aligned, an attenuation filter is placed in the optical path, the camera is turned

on and the center of the light spot observed can be used as the image center.

This method is commonly used in experimental optics to align lens assemblies and
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gives reproducible results. If the lens is removed, the reflection from the surface of

the image sensor will also give an indication of its perpendicularity with respect to

the optical axis. When a low power laser (< 10mW) is used, no harm is done to a

discrete array camera sensor (CCD). However, vidicon tubes might be damaged by

burning in.

13.2 Calibration of the Rotation Axis

In the landscape experiments, we did not explicitly apply any vertical translation

(along Y axis). However, fig. 8-2 show a considerable vertical translation of about

-0.9 mm. This is mainly because the real rotation axis does not pass through the

center of projection'.

To clarify this, we should mention that in motion vision, it is assumed that the

rotation axis passes through the origin of the viewer centered coordinate system, i.e

the center of projection. But at the CMU Imaging Laboratory, the rotation mechanism

was not set up to align the Z axis of rotation with the optical axis. The CMU vision

system was equipped with several cameras and evidently the camera used for taking

the landscape images was set off center. However, for obtaining the experimental

results, we have employed algorithms which erroneously assume that the rotation

axis passes through the center of projection.

According to the basic kinematics, the compensating translation which results

from shifting the rotation axis is given by

V. = -w x B (13.1)

where B is a vector extending from a point on the real (desired) rotation axis to a point

I If the CCD edges are not accurately aligned with the horizontal and vertical axes of the camera
frame, i.e. the CCD is mounted at an angle with respect to the camera coordinate system, such
kind of errors happen in both vertical and horizontal directions. But it is not the case here because
the inaccuracy of motion estimation has occurred only in the vertical direction.
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on the assumed rotation axis; see fig. 13-1. In our experiment, V. = -(w) (bi)

Real rotation axis

Assumed rotation axis J

Y..... 1 .1

Figure 13-1: In motion vision the assumption is that the rotation axis passes through
the center of projection (origin). In the landscape image sequence, the true rotation
is parallel to the optical axis but does not pass trough the origin. This will result in
a translation which should be compensated for.

where V. = -0.9% mm, and w = -0.3 degree. As a result, the real rotation axis was

located at about b = -(-0.9)/((-0.3 x 7r)/180) = -172 mm perpendicular distance

from the optical axis in the horizontal plane.

13.2.1 Generalization

A similar method can be used for the calibration of the rotation axis which is parallel

to the optical axis in a camera system arrangement in the general case.

In order to find the real location of the rotation axis, the following steps should

be taken:

e Step 1: Apply a pure rotation about the axis which is supposed to be the optical
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axis.

* Step 2: If rotation Wlo is not accurately known, compute it by applying eqn. 4.4

to a relatively large patch around the principal point.

e Step 3: Estimate the apparent motion (u., v.) at the principal point using the

eqn. 8.4 or 4.4.

* Step 4: The real location of the rotation axis is given by,

r b _ - - )*-- !

-= Z wR° (13.2)

where Zo is depth at the principal point, and f is the focal length of the camera.

Point (be, b.) represents the location where the real rotation axis (which is parallel

to the optical axis) intersects the image plane.

13.3 Summary

Focal length, principal point, and the rotation axis position are the three most impor-

tant factors which can effect the computations in our motion vision algorithms.

The experimental results show that we may be able to get away with using the

nominal focal length as the focal length, and using the image center as the principal

point. However, we have to calibrate the system for finding the real rotation axis and

compensate for the resultant translation if the rotation axis does not pass through

the projection center. The calibration technique introduced in this chapter offers an

easy and reliable solution to this important problem.
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Conclusions
Chapter 14

This thesis introduced a general motion vision system which takes any sequence

of images as its input and recovers the motion and shape without any need to check,

choose, and adjust parameters. A complete implementation of this motion vision

system has been tested on real images and the critical issues involved in the its

autonomous implementation have been studied. This chapter makes some concluding

remarks about this fixation based motion vision system.

14.1 Features

* In contrast to previous work done in the area of motion vision, our solutions are

general and do not impose any severe restrictions on the motion or the structure of

the environment.

* The fixation method uses neither optical flow nor feature correspondence. In-

stead, it directly employs the image brightness gradients.

* Our motion vision system neither requires tracked images as input nor uses

hardware tracking for obtaining fixated images. Instead, it introduces a pixel shifting

process for constructing fixated image sequences at any arbitrary fixation point. This

process is done entirely in software without moving the camera for tracking.

* The fixation method does not restrict the fixation point and virtually any point

can be chosen as the fixation point.

9 The algorithms and iormulations presented in the fixation method are simple
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and have been successfully implemented on real images.

14.2 Results

* Good estimations for motion parameters can be obtained using optimum patch sizes

(see chapter 8).

e The novel introduction and use of normalized error has enabled us to find opti-

mum patch sizes which result in good estimates for motion parameters. This technique

has been implemented on many real image sequences (see chapter 9).

e The novel pixel shifting process for constructing fixated (tracked) images has

been successfully tested on several real image sequences (see chapter 11).

e The experimental results in chapter 12 show that good depth maps can be

obtained using only two monocular real images. If we use the data from a single pixel

for recovering the corresponding depth, the reliable depth map will be sparse. Using

the information from several pixels in a surrounding patch for finding the depth at

its central point results in a relatively dense map of reliable depths. We can obtain

even better results by subsampling the initial images. Subsampling acts as a low pass

filter and overcomes some of inherent high frequency noise in real images.

e We may get away with using the nominal focal length and principal point in the

fixation formulations, but we have to make sure to calibrate the imaging system for

the real rotation axis. The method described in chapter 13 offers a simple solution to

this important practical problem which can result in considerable motion estimation

errors if it is not detected and compensated for.

9 The implementations were done on a Sun SPARCstation IPX using C codes.

Despite not using either parallel or optimized programs, the actual run-time for find-

ing the motion parameters and the depth map for an image of 227 x 280 pixels was

about a fraction of second and a few seconds respectively.
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14.3 Assumptions

* In the process of solving the general motion vision problem and writing the eqn. 3.27,

we assumed that motion parameters can be obtained using a small patch around

the fixation point. This is a pure geometric assumption and does not place any

restrictions on the depth topology. Numerous experimental results in chapter 9 show

that optimum patch sizes are small enough to justify our assumption.

9 This work assumes that there is one rigid motion between the environment

and the observer. However, small deviations from rigidity is tolerated by the system

because it is treated as noise and the least squares methods finds the best solution

which fits the whole data.

14.4 Shortcomings

* The fixation method fails if the fixation point is located at the center of a uniform

brightness patch because in such a case, motion will be undetectable. However, we

have presented a mechanism for preventing this from happening by introducing an

autonomous technique which chooses an appropriate location for the fixation point

(see chapter 10).

14.5 Relation to Other Works

* As oppose to other work done in area of direct methods, our fixation technique

estimates both the motion and shape for the general case [69, 60].

* In recent years, many Kalman filter based techniques have tried to improve the

depth estimations over time by using more than two frames [38, 39, 40, 56, 57, 58, 59,

251. These techniques not only need to know the motion in advance but also require

a good initial guess for the depth map in order to converge to a solution. Despite

these major advantages of Kalman filter methods, the depth maps recovered by our
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fixation method are far more superior compared to those obtained by the Kalman

filtering methods even after several iterations [26, 27].

* Recently, Tomasi and Kanade [76, 75] introduced a feature based technique for

recovering the motion and shape from a sequence of images. Their method is different

from our work in the following sense:

- It assumes orthographic projection which handicaps the system when dealing

with close by objects.

- It uses feature correspondence.

- It requires choosing and tracking many feature points.

- Depth is obtained only at the feature points.

- It is computationally very expensive.

14.6 Future Extensions

9 The motion estimates obtained from fixation method are quite satisfactory. However,

the depth maps may be improved by using more than two image frames in a Kalman

filter based system as follows:

- Converting the input images to a sequence of fixated images at a desired fixation

point using the pixel shifting process.

- Obtaining the motion estimates from the fixation method if it is not known.

- Using the depth map estimates from the fixation method as the initial guess for

the Kalman filter system.

Employing such a hybrid system can potentially improve the depth map and

accelerate the convergence rate of the Kalman filter.

e The algorithms and formulations in the fixation method are very well suited

to parallel implementation. Such an approach overwhelmingly improves the system

performance because most of the operations are simple additions and subtractions

which are done independently but all over the image.
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* Due to their parallel nature, the fixation algorithms can be implemented on a

single chip using analog VLSI techniques such as the one by Mead (41]. This seems

to be an attractive approach for task specific applications.

* By using segmentation, this work can be extended to multiple motion case.
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Derivation of Brightness Change
Constraint Equation

Appendix A

The brightness change constraint equation (BCCE) relates the change in the image

brightness at a point (x, y) to the apparent velocity (u, v) of the brightness pattern

at that point in the image. This appendix describes in detail the steps involved in

the derivation of the BCCE [30, 54, 29].

Let E(x,y,t) denote the image brightness at time t at the image point (x,y).

Then, if u(x, y) and v(x, y) are the x and y components of the apparent velocity at

the point, we expect that the brightness will be the same at time t + bt at the point

(x + bx, y + by), where bx = uebt and by = vbt. In other words,

E(x,y,t) = E(x + ubt, y + vt,t + ,t) (A.1)

for small time interval bt. The underlying assumption in writing the eqn. A. 1 is slow

spatio-temporal variations in lighting which is true for many practical applications.

If brightness varies smoothly with x, y, and t, we can expand the right hand side

of the above equation in a Taylor series to obtain

E(x,y,t) = E(,y,t) + OE+by +tO+ (A.2)aOx+ -Oy a t + A2

where e includes second- and higher-order terms in bx, by, and bt. Canceling E(x, y, t),
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dividing through by bt, and taking the limit as bt --- 0, we obtain

dx dE dy dE aE
dtx + -dt y+ - = 0, (A.3)

which is actually just the expansion of the total derivative of E with respect to time

into its partial derivatives, in other words

dE

d 0. (A.4)

Using the abbreviations
__ dx

Xt- (A.5)

Yt -- at
=dt

and

EY 8E (A.6)

Et LE
a t

equation A.3 can be written as

Et + xtE. + ytE , = 0. (A.7)

The above equation is called the brightness change constraint equation because it

expresses a constraint on the components xt and yt of the apparent velocity at a point

(x, y) in the image.

In appendix B, we will show how the derivatives E•, E., and Et are estimated at

any image point.



Computation of Brightness
Gradients

Appendix B

The spatial and temporal derivatives of the image brightnesses are the basic data

blocks in the direct methods. This appendix describes the formulations behind the

estimation of the brightness gradients in images [30, 29].

The spatial brightness gradients E•, E., and temporal brightness gradient Et are

computed simply by using the first differences of image brightness values on a cubic

grid; see fig. B-1.

Using the indices i, j, and k to represent x, y, and time t respectively, the estimates

of spatial gradients E. and E., are give by:

1
E -((Ei+l,j,k + Ei+l,j,k+l + Ei+l,j+l,k + Ei+l,j+l,k+l)

4bx

-(Eij,k + Ei,j,k+l + Ei,j+l,k + Ei,j+l,k+l)), (B. 1)

and

Ey -•-((Ei,j+I,k + Eij+l,k+l + Ei+l,j+l,k + Ei+l,j+l,k+l)

-(Ei,j,k + Ei,j,k+l + Ei+lj,k + Ei+l,j,k+l)), (B.2)
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2nd ImageN

Ist Image

yk

t k+)

Sti+ l

Figure B-i: The first brightness derivatives required in the direct methods can be
estimated using first differences in a 2 x 2 x 2 cube of brightness values. The estimates
apply to the point where four neighboring pixels in an image meet, and at a time
halfway between two successive images.

and the temporal gradient Et is

1
Et Pt:6t ((Ei,j,k+, + Eij+l,k+l + Ei+lj,k+l + Ei+,,j +,,k+l)

-(Eid,,k + Ei,j+,,k + Ei+,,j,k + Ei+l,j +l,k)). (B.3)

These formulations give the brightness gradients at a point lying between four neigh-

boring pixels, and between successive images.

Considering the fact that we perform spatial tessellation by using pixels and tem-

poral tessellation by employing individual time varying frames, the above algorithms

compensate for part of the tessellation errors involved in discrete digitized images.



Depth at Fixation Point
Appendix C

The results in chapter 3 show that after obtaining the translation t, we need to find

Z. (depth at the fixation point) in order to estimate a depth Z at any point (x, y) in

the image plane. This appendix introduces an algorithm for finding the depth Z0.

At the fixation point, eqn. 3.26 is exactly expanded to

1 1
Et + WR.Vo • ft. + (° - o)(S0 -t) = 0 (C.1)

which is similar to eqn. 3.27. Theoretically, all terms of the eqn. C.1 vanish because

Ej is zero at the fixation point, and v r = 0 applies to all points including the fixation

point which means v. -ft. = v = 0. As a result, we cannot directly obtain the

depth Zo from eqn. 3.26. However, at any point i around the fixation point, depth

Zoj can be obtained from eqn. 3.26 as

1 v•xr_. -

Z El = I(vix r , 2 (C.2)

By averaging N of such neighboring depths, we can estimate the depth Z0 as

1 =N
Z. = Irtvi xr (C.3)NI1r.1I j EtjjjroI + wR0.(v,.ro))

where si, vi, and Ej1 are computed for N points around the fixation point. In eqn. C.2,

it is assumed that Z01 % Z, which is valid considering the averaging in eqn. C.3.
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